期刊文献+

一种发现多层次密度的聚类算法

A Density-based Clustering Algorithm for Multi-level Density
下载PDF
导出
摘要 目的提出一种可以发现不同密度层次分布的聚类算法,解决多层次不同密度数据集的聚类问题.方法采用对数据对象的k-邻居距离进行排序,利用线性回归分析方法发现密度区域变化的边界,对同一个密度区域中的点利用DBSCAN算法进行聚类,获得了多密度级别的类.结果使用真实数据集与人工数据集测试结果表明,此算法可以发现现有算法所不能发现的模式.结论算法在时间效率上与DB-SCAN相同,空间效率上随着输入数据的数目增加而线性增长,同时此算法可适用于高维数据集. The density-based algorithms for clustering are important clustering algorithms, such as DBSCAN, which can be used to find arbitrary shapes. The existing density-based algorithms can not find multilevel density clusters. The paper proposes an algorithm for clustering different density clusters. Because kneighbor distances of objects show the different density in data sets, the k-distances of all objects are sorted, and the boundary of different density level is found by linear regression. Algorithm on both real and artificial data sets are tested. The results show that its time complexity is equal to that of DBSCAN; its space complexity will be decreased linearly with the increasing numbers of input points.
出处 《沈阳建筑大学学报(自然科学版)》 CAS 2006年第2期329-333,共5页 Journal of Shenyang Jianzhu University:Natural Science
基金 辽宁省自然科学基金(20052006) 辽宁省教育厅攻关计划项目(05L354)
关键词 数据挖掘 聚类 基于密度的算法 DBSCAN data mining clustering density-based algorithms DBSCAN
  • 相关文献

参考文献9

  • 1Ng R T, Han J. Efficient and Effective Clustering Methods for Spatial Data Mining [ C ]. Santiago, Chile: Proe. of the 20th VLDB Conference, 1994.144 - 155.
  • 2Karypis G. Han E H, Kumar V. CHAMELEON. A Hierarchical Clustering Algorithm Using Dynamic Modeling[J]. COMPUTER, 1999(32) :68 - 75.
  • 3Guha S, Rastogi R, Shim K. Rock: A Robust Clustering Algorithm for Categorical Attributes[C]. Sydney, Australia: Proc. of Conf. Data Engineering (ICDE' 99 ),1999. 512 - 521.
  • 4Guha S, Rastogi R, Shim K. CURE: An Efficient Clustering Algorithm for Large Databases [ C ]. Seattle,WA. Proc. of SIGMOD 1998, 1998.73 - 84.
  • 5Ester M, Kriegel H P, Sander J, et al. A Density-BasedAlgorithm for Discovering Clusters in Large Spatial Databases [ C]. Portland OR, USA: Proc. of KDD Conf., 1996. 226 - 231.
  • 6Ankerst M, Breunlg M M, Kriegel H P, et al. Optics:Ordering Points to Identify the Clustering Structure[C]. Philadelphia, Pennsylvania USA: Proe. of SIGMOD 1999, 1999.49 - 60.
  • 7Levent Ertoz, Michael Steinbach, Vipin Kumar. Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data[ C]. San Francisco, CA,USA: Proc. of Proceedings of the Third SIAM International Conference on Data Mining, 2003. 150 - 155.
  • 8Agrawal R, Gehrke J, Gunopulos D, et al. Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications[ C]. Seattle, WA: Proe. of SIGMOD 1998,1998.94 -105.
  • 9宋晓宇,薛春燕,许景科.关联规则在先进技术与产品推荐系统中的应用[J].沈阳建筑大学学报(自然科学版),2005,21(5):564-567. 被引量:2

二级参考文献9

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部