期刊文献+

薄膜结构分析中的褶皱判别准则及其分析方法 被引量:17

Wrinkling Criteria and Analysis Method for Membrane Structures
下载PDF
导出
摘要 由于膜材不能抗压,在薄膜结构受力分析中膜材有纯拉、单向褶皱和双向褶皱3种状态.当膜材处于褶皱状态时,其受力性能与纯拉状态有很大的差异,在分析中应予以区别,故对膜材3种受力状态的界定成为必要.本文对目前常用的判别柔性材料受力状态的3种准则进行了详细论述,分别讨论了各自的原理及存在的问题,得出主应变准则只能适用于各向同性膜材,主应力_主应变准则对各向同性和正交异性膜材均能适用.并给出了膜材产生褶皱后的处理方法. As membrane cannot resist any compression stresses, there are three possible states: taut, wrinkled, and slack when membrane structures been loading. There are many differences between taut behavior and wrinkling behavior of the structure. Therefore it is important to develop effective analysis methods for the evaluation of the taut, wrinkle and slack. Three criteria are discussed. It is shown that principal strain criterion is only suitable for the isotropic membranes and principal stress-principal strain criterion is suitable for both the isotropic and orthotropic membranes. Also, a method for the wrinkling analysis of orthotropic and isotropic membranes was presented.
出处 《北京交通大学学报》 EI CAS CSCD 北大核心 2006年第1期35-39,共5页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 国家自然科学基金资助项目(50338010) 霍英东青年教师基金资助项目(91074)
关键词 薄膜结构 褶皱 主应力 主应变 本构矩阵 membrane structures wrinkling principal stress principal strain constitutive matrix
  • 相关文献

参考文献4

  • 1李作为,杨庆山,刘瑞霞.薄膜结构褶皱研究述评[J].中国安全科学学报,2004,14(7):16-20. 被引量:13
  • 2Seokwoo Kang,Seyoung Im.Finite Element Analysis of Wrinkling Membranes[J].Journal of Applied Mechanics,1997,64(6):263-269.
  • 3Aaron L Adler.Finite Element Approaches for Static and Dynamic Analysis of Partially Wrinkled Membrane Structures[D].Boulder:University of Colorado,2000.
  • 4Masahis Fujikake,Osamu Kojima,Seiichiro Fukushima.Analysis of Fabric Tension Structures[J].Computers and Structures,1989,32:537-547.

二级参考文献18

  • 1Roddeman DG. Finite-element analysis of wrinkling membranes[J]. Communications in Applied Numerical Methods, 1991, 7:299-307
  • 2H.Wagner. Flat sheet metal girders with very thin metal web[R]. Z. Flugtechn. Motorluftschiffahrt 20, 8-12 (translation into English, NACA TM 604-606), 1929
  • 3Suzuki T, Ogawa T, Motoyui S et al. Investigation on wrinkling problem of membrane structure[A]. Proc. of IASS-MSU Symposium on Domes from Antiquity to the Present[C]. Istanbul: 1988.695-702
  • 4Dean WR. The elastic stability of an annular plate[J]. Proc Roy Soc Lond A, 1924, 106:268-284
  • 5Hamada M, Harima T. In-plane torsional buckling of an annular plate[J]. Bull JSME, 1986, 29(250): 1 089-1 095
  • 6Durban D, Stavsky Y. Elastic buckling of polar-orthotropic annular plates in shear[J]. Int J Solids Struct, 1982, 18(1): 51-58
  • 7Ore E, Durban D. Elastoplastic buckling of annular plates in pure shear[J]. J Appl Mech, 1989, 56(3): 644-651
  • 8Cheng C, Shang X. The effect of large rotation on post-buckling of annular plates[J]. Acta Mech Solida Sinca, 1992, 5(3):277-284
  • 9Wong Y. W. Analysis of wrinkle patterns in prestressed membrane structures[D]. Mphil thesis, University of Cambridge, Department of Engineering, Cambridge, UK, 2000
  • 10Wong Y. W. and Pellegrino S. Computation of Wrinkle Amplitudes in Thin Membranes[A]. 43rd AIAA Structures, Structural Dynamics, and Materials Conference[C]. Denver: Co, AIAA-2 002-1 369, 2002

共引文献12

同被引文献214

引证文献17

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部