期刊文献+

食物营养学价值类型特征聚类分析

Cluster Analysis on the Classification of Nutritive Value in 20 Foods
下载PDF
导出
摘要 目的:探讨系统聚类分析方法在食物营养学价值评价中的意义。方法:选取北方常见的20种食物,根据其8种主要营养素含量进行分层聚类分析。结果:依据欧氏距离平方和的大小确定食物间的相似性,通过分析距离测度值的变化将20种食物大体分为4类。结论:聚类分析可用来综合评价食物营养学特征,并将其合理归类。 Objective: To investigate the significance of systematic cluster analysis in classification of nutritive value in foods. Methods: After selecting 20 normal foods in northern China, 8 nutrients were examined with hierarchical cluster analysis. Results: The 20 foods could be divided into 4 categories by squared Eudlidean distance. Conclusion: The cluster analysis can reveal the characteristics of nutritive value, and classify it into different categories reasonably.
作者 史宝林
出处 《河北北方学院学报(医学版)》 2006年第1期10-13,共4页 Journal of Hebei North University:Medical Edition
关键词 食物 营养素 聚类分析 Foods Nutrients Cluster analysis
  • 相关文献

参考文献5

  • 1叶葶葶.预防医学[M].北京:人民卫生出版社,2000.253.
  • 2张文彤.SPSS11.0统计分析教程[M].北京:北京希望电子出版社,2002..
  • 3曹素华.聚类分析.见:金丕焕主编.医用统计方法[M].上海:上海医科大学出版社,1993.290-298.
  • 4Steuer B,Schulz H,Lager E.Classification and analysis of citrus oils by NIR spectroscopy[J].Food Chemistry,2001,72:113-117.
  • 5张国文,倪永年,涂北平.食用植物油的分类和质量鉴别的模式识别研究[J].食品科学,2005,26(1):71-75. 被引量:27

二级参考文献12

  • 1戴寅 王叔淳 杨惠芬.食品卫生理化检验标准手册[M].北京:中国标准出版社,1997.426-446.
  • 2方开泰.实用多元统计方法[M].上海:华东师范大学出版社,1989.247.
  • 3El-Hnmdy A H, E1-Fizga N K. Detection of olive oil adulteration by measuring its authenticity factor usingreversedphase high-performance liquid chromatography[J]. Journalof Chromatography A, 1995, 708:351-355.
  • 4Aparicio R, Aparicio-Ruyz R. Authentication of vegetable oils by chromatographic techniques[J]. Journal of Chromatography A, 2000, 881: 93-104.
  • 5Lee D S, Noh B S, Bae S Y, et al. Characterization of fatty acid composition in vegetable oils by gas chromatography and chemometrics[J]. Anal Chim Acta, 1998, 358 163-175.
  • 6Steuer B, Schulz H, Lager E. Classification and analysis of citrus oils by NIR spectroscopy[J]. Food Chemistry, 2001,72: 113-117.
  • 7Kemsley E K. Discriminant analysis of high-dimensional data: a comparison of principal components analysis and partial least squares data reduction methods[J]. Chemometrics and Intelligent Laboratory Systems, 1996, 33: 47-61.
  • 8Massart D L, Kaufman L. The interpretation of analytical chemical data by use of cluster analysis[M]. New York: John Wiley and Sons, 1983.
  • 9Kaufman L, Rousseeuw P. J Finding Groups in Data[M].New York: Wiley, 1990.
  • 10Markus L. Determination of the adulteration of butter fat by its triglyceride composition obtained by GC. A comparison of the suitability of PLS and neural networks[J]. Food Chemistry, 1996, 55: 389-395.

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部