摘要
基于Chebyshev多项式函数系的特点,设计了求解非齐次线性自治系统的一种新的精细算法———基于Chebyshev正交多项式系的齐次扩容精细算法(HHPDC)。这一算法不仅避免了HPD-F算法中的矩阵求逆,还克服了HHPDF算法中对右端激励的周期性要求,从而适合于任意形式的右端激励;不仅计算量小、设计合理,还易于推广和实现。理论与算例表明,HHPD-C算法十分有效。
This article devises a new HPD method named HHPD- C to solve nonhomogeneous linear autonomy system basing on Chebyshev orthogonal Polynomial series. The algorithm avoids inversing matrixes from which HPD- F suffers and conquers the restriction that stimulus must be periodic, which HHPD- F suffers, so the method can be used for any stimulus. In addition, HHPD- C has several other advantages, such as simpler in designing, easier to generalize and implement. The results of the two examples discussed in this paper show that the HHPD- C is more effective.
出处
《东华大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第2期46-49,共4页
Journal of Donghua University(Natural Science)
基金
国家自然科学基金项目(项目编号:50376039)
受教育部科学技术研究重点项目的资助
关键词
精细算法
非齐次线性自治系统
齐次扩容精细算法
high precision direct, nonhomogeneous linear autonomy system, homogenized high precision direct integration