期刊文献+

基于支持向量机的连杆曲线识别 被引量:2

Recognition of Bar Linkage Curve by Support Vector Machine
下载PDF
导出
摘要 四连杆机构的轨迹图谱相当繁浩,如何从数千条轨迹曲线中找到与要求实现的轨迹相同或相似的图形是限制轨迹图谱应用的关键之一。提出一种基于支持向量机的连杆曲线识别方法,把所要实现的轨迹离散化作为输入,通过所设计的支持向量机的判别,找到图谱中相对应的轨迹曲线。 There are too many curves in pattern of bar linkage curves, how to find the right curve is the key for applications of pattern.. A method based on support vector machine to recognize bar linkage curve is presented in this paper. The curve needes to realize is discretized as input, and computed by support vector machine, then the right type curve can be recognized.
作者 孔凡国 黄伟
出处 《机械设计与研究》 CSCD 北大核心 2006年第2期26-28,共3页 Machine Design And Research
关键词 连杆曲线 支持向量机 图谱 bar linkage curve support vector machine pattern
  • 相关文献

参考文献3

二级参考文献17

  • 1王知行,陈照波,江鲁.利用连杆转角曲线进行平面连杆机构轨迹综合的研究[J].机械工程学报,1995,31(1):42-47. 被引量:28
  • 2孔凡国,邹慧君.基于实例的机构创新设计理论与方法的研究[J].机械与电子,1996(2):17-20. 被引量:7
  • 3曹惟庆.连杆曲线识别的模糊数学方法[J].陕西机械学院学报,1992,(2):21-28.
  • 4[2]李学荣. 连杆曲线图谱. 重庆:重庆出版社, 1993
  • 5[3]McGarva J R. Rapid search and selection of path generating mechanisms from a library. Mechanism & Machine Theory, 1994, 29(2):223~235
  • 6[5]Gero J S, Kazakov V A. Learning and re-using information in space layout planning problems using genetic engineering. Artificial Intelligence in Engineering, 1997, 11(3):329~334
  • 7[6]Rosenman M A. An exploration into evolutionary models for non-routine design. Artificial Intelligence in Engineering, 1997, 11(3):287~293
  • 8[7]Coello C A. Towards automated evolutionary design of combinational circuits. Computers and Electrical Engineering, 2001, 27(1):1~28
  • 9[8]Liang Yanchun, Zhou Chunguang. Advances in identification of nonlinear characteristics of packaging based on computational intelligence. Mechanics Research Communication, 2000, 27(1):15~20
  • 10[9]Kazakov V A, Gero J S. Evolving design genes in space layout planning problems. Artificial Intelligence in Engineering, 1998, 12(3):163~176

共引文献33

同被引文献15

  • 1李迪,张漫,张保军.岩石边(滑)坡深部变形的分类及应用[J].长江科学院院报,2006,23(4):23-27. 被引量:8
  • 2孔凡国,邹慧君,陈安适.一种新的轨迹机构综合方法[J].上海交通大学学报,1996,30(12):7-12. 被引量:2
  • 3[美]瓦普尼克.统计学习理论的本质[M].张学工,译.北京:清华大学出版社,2000.
  • 4Vapnik V. The nature of statistical learning theory [ M ]. New York: Springer Science & Business Media, 2000.
  • 5Suykens JAK, Vandewalle J. Least Squares Support Vector Machine Classifiers [ J]. Neural Processing Letters, 1999, 9(3) : 293 - 300.
  • 6Suykens J A K, Brabanter J D, Lukas L, et al. Weighted least squares support vector machines : robustness and sparse approximation [ J ]. Neurocomputing, 2002, 48 (01) :85 - 105.
  • 7Santos G S D, Luvizotto L G J, Mariani V C, et al. Least squares support vector machines with tuning based on chaotic differential evolution approach applied to the identification of a thermal process [ J ]. Expert Systems with Applications, 2012,39 ( 5 ) : 4805 - 4812.
  • 8Li B, Li D, Zhang Z, et al. Slope stability analysis based on quantum-behaved particle swarm optimization and least squares support vector machine [ J ]. Applied Mathematical Modelling, 2015, 39( 17 ) :5253 - 5264.
  • 9Wu P, Gao L, Zou D, et al. An improved particle swarm optimization algorithm for reliability problems [ J ]. Isa Transactions, 2011, 50 ( 1 ) :71 - 81.
  • 10Kennedy J. Particle swarm optimization [ C ]//Proceedings of the IEEE International Conference on Neural Networks, Perth, 1995.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部