期刊文献+

基于概率模糊认知图的混合入侵检测方法 被引量:3

Hybrid Intrusion Detection Approach Based on Probabilistic Fuzzy Cognitive Map
下载PDF
导出
摘要 结合模糊认知图理论,构造基于概率模糊认知图(PFCM)的攻击图来描述入侵行为,提出一种结合误用检测和异常检测的基于PFCM的混合入侵检测方法.该方法用模糊概念描述异常,用数值运算代替模式匹配,并利用概率测度有效表示各因素间关系的不确定性.构造基于PFCM的Smurf攻击图并进行检测实验,实验结果表明该方法能在保持高检测率的情况下降低误报率,并具有较好的鲁棒性. Based on probabilistic fuzzy cognitive map (PFCM), the attack map was constructed to describe intrusion behaviors by applying fuzzy cognitive map theory. By combining misuse detection with anomaly detection, a hybrid intrusion detection approach based on PFCM was presented. It described anomaly as fuzzy conception, executed numerical operations instead of pattern matching, and expresses the uncertainty of relations of the factors by applying probability measure. The Smurf attack map based on PFCM was constructed and experimented. The test results showed that the approach was robust and can keep high detection rate with lower false positive rate.
出处 《小型微型计算机系统》 CSCD 北大核心 2006年第5期783-787,共5页 Journal of Chinese Computer Systems
基金 广西科学基金(桂科自0339008)资助
关键词 网络入侵检测 概率模糊认知图 概率测度 network intrusion detection probabilistic fuzzy cognitive map probability measure
  • 相关文献

参考文献3

二级参考文献24

  • 1[1]Lee W and Stolfo S J. Data mining approaches for intrusion detection [C]. Proceedings of the 7th USENIX Security Symposium, 1998, (1):26~29.
  • 2[3]Lee W,Stolfo S J and Mok K W. A data mining framework for building intrusion detection models[J]. IEEE Symposium on Security and Privacy, 1999.
  • 3[4]Han J, Dong G and Yin Y. Efficient mining of partial periodic patterns in time series database[C]. Proc Int. Conf on Data Engineering(ICDE99) ,March 1999,105~ 115.
  • 4[5]Han J, Gong W and Yin Y. Mining segmen-wise periodic patterns in time-related database [C]. In:Proc, 1998 Int ′ l Conf. On Knowledge Discovery and Data Mining (KDD98), 1998, 214 ~218.
  • 5Bart Kosko. Fuzzy Engineering. Englewood Cliffs, NJ: Prentice Hall, 1997.
  • 6Thierry Marchant. Theory and methodology cognitive maps and fuzzy implications. European Journal of operational research,1999. 114:626-637.
  • 7J P Carvalho, J A Tome. Rule based fuzzy cognitive maps--A comparative study. The 18th Int' 1 Cord of the North American Fuzzy Information Processing Society, New York, 1999.
  • 8Liu Zhi-Qing, R Satur. Contextual fuzzy cognitive map for decision support in geographic information systems. IEEE Transactions on Fuzzy Systems, 1999, 5 (10) : 495-- 502.
  • 9R satur, Liu Zhi-Qing. A contextual fuzzy cognitive map framework for geographic information systems. IEEE Transactions on Fuzzy Systems, 1999, 5(10): 481--494.
  • 10Brahim Chaib Draa, J desharnais. A relational model of cognitive maps. 2001. http://citeseer.nj.nec.com/.

共引文献37

同被引文献35

  • 1杨锋,钟诚,李智.基于概率模糊认知图的Mstream攻击检测方法[J].计算机工程,2006,32(10):125-127. 被引量:3
  • 2蔡龙征,余胜生,周敬利,王晓锋.一种无类标训练数据异常检测模型[J].小型微型计算机系统,2006,27(10):1856-1860. 被引量:2
  • 3Li G, Hamilton H J. Basic association rules[ A ]. Proceedings 2004 SIAM International Conference on Data Mining (SDM' 04)[ C]. Lake Buena Vista: Soc had & Appl Math,2004. 166 - 177.
  • 4Wai Hoau,Chan K C C.Mining changes in association rules: A fuzzy approach[ J] .Fuzzy Sets and Systems,2005,14( 1 ) : 87- 104.
  • 5QIN XZ, LEE W. Discovering novel attack slrategies from IN- FOSEC alerts [ A ]. ESORICS 2004 [ C ]. Sophia Anfipolis: LNCS(3139) ,439 - 456.
  • 6Corporation Symantec. Symantec Global IntemetSecurity Threat Report Trends for 2008 [ EB/OL ]. http://eval, symantec, corn/ mktginfo/enterprise/white_ papers/b-whitepaper_ intemet_ se- curity_ threat_ report_ xiv_ 04-2009. en-us, pdf.
  • 7Peng Ning, Yun Cui, Douglas S. REEVES, DINGBANG XU. Techniques and tools for analyzing intrusion alerts [ J ]. ACM Transactions on Information and System Security, 2004,7 (2) : 274 - 318.
  • 8James M Keller, Jeffrey Osbom. Training the fuzzy integral [J]. International Journal of Approximate Reason, 2(102, 15 (1):1 -24.
  • 9王熙照.模糊测度和模糊积分及在分类技术中的应用[M].北京:科学出版社,2007.
  • 10Valdes Alfonso, Skinner Keith. Probabilistic alert correlation [ A]. Proceedings of the 4th International Symposium on Re-cent Advances in Intrusion Detection, 2001 [ C ]. London: Springer-Verlag, 2001.54 - 68.

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部