期刊文献+

基于Apriori算法的关键词推荐在面向主题的用户个性化搜索中的应用 被引量:5

Application of Key Words Recommendation Based on Apriori Algorithm in Theme-Oriented Personalized Search
原文传递
导出
摘要 对传统协作过滤方法在关键词推荐系统中的应用进行分析.在 Apriori 算法的基础上,提出一种面向主题的用户个性化搜索的关键词推荐算法.该算法基于 Apriori 算法,对用户的搜索历史关键词集合进行频繁集挖掘.实验证明。该算法可以根据用户输入的历史关键词推荐给用户满足其当前搜索兴趣倾向的新的关键词,使用户的查询更加精确化和个性化. The application of collaborative filtering algorithm in key words recommendation is analysed and a theme-oriented key words recommendation algorithm in personalized search is proposed based on Apriori algorithm in this paper. The essential of proposed method is mining the frequent itemsets of the historical key words by Apriori algorithm. Experimental result indicates that the algorithm can recommend new key words to user based on the historical key words and make the search results more accurate and individual.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2006年第2期186-190,共5页 Pattern Recognition and Artificial Intelligence
关键词 个性化 APRIORI算法 关键词 搜索引擎 Personalization, Apriori Algorithm, Key Words, Search Engine
  • 相关文献

参考文献14

  • 1Belkin N J, Croft W B. Information Filtering and Information Retrieval: Two Sides of the Same Coin. Communications of the ACM, 1992, 35(12): 29-38
  • 2Foltz P W, Dumais S T. Personalized Information Delivery: an Analysis of Information Filtering Methods. Communications of the ACM, 1992, 35(12): 51-60
  • 3曾春,邢春晓,周立柱.基于内容过滤的个性化搜索算法[J].软件学报,2003,14(5):999-1004. 被引量:118
  • 4Shardanand U, Maes P. Social Information Filtering: Algorithms for Automating "Word of Mouth". In~ Proc of the SIG-CHI Conference on Human Factors in Computing Systems.Denver, USA, 1995, 210-217
  • 5Sarwar B, Karypis G, Konstan J, Reidl J. Item Based Collaborative Filtering Recommendation Algorithms. In: Proc of the 10th International Conference on World Wide Web. Hongkong,China, 2001, 285-295
  • 6Agrawl R, Srikant R. Fast Algorithms for Mining Association Rules. In: Proc of the 20th International Conference on Very Large Data Bases. Santiago, Chile, 1994, 487-499
  • 7曾春,邢春晓,周立柱.个性化服务技术综述[J].软件学报,2002,13(10):1952-1961. 被引量:394
  • 8Agrawal R, Imielinski T, Swami A. Mining Association Rules between Sets of Items in Large Databases. In: Proc of the ACM SIGMOD International Conference on Management of Data.Washington, USA, 1993, 207-216
  • 9Mobasher B, Dai H H, Luo T, et al. Effective Personalization Based on Association Rule Discovery from Web Usage Data. In:Proc of the ACM International Workshop on Web Information and Data Management. Atlanta, USA, 2001, 9-15
  • 10Pretschner A, Gauch S. Ontology Based Personalized Search. In: Proc of the 11th IEEE International Conference on Tools with Artificial Intelligence. Washington, USA: IEEE Computer Society, 1999, 391-398

二级参考文献42

  • 1Han, E.H., Boley, D., Gini, M., et al. WebACE: a web agent for document c ategorization and exploration. In: Sycara, K.P., Wooldridge, M., eds. Proceeding s of the 2nd International Conference on Autonomous Agents. New York: ACM Press, 1998. 408~415.
  • 2Schwab, I., Pohl, W., Koychev, I. Learning to recommend from positive evi dence. In: Riecken, D., Benyon, D., Lieberman, H., eds. Proceedings of the Inter national Conference on Intelligent User Interfaces. New York: ACM Press, 2000. 2 41~247.
  • 3Pretschner, A. Ontology based personalized search [MS. Thesis]. Lawrence, KS: University of Kansas, 1999.
  • 4Adomavicius, G., Tuzhilin, A. User profiling in personalization applicati ons through rule discovery and validation. In: Lee, D., Schkolnick, M., Provost, F., et al., eds. Proceedings of the 5th International Conference on Data Mining and Knowledge Discovery. New York: ACM Press, 1999. 377~381.
  • 5Balabanovic, M., Shoham, Y. Fab: content-based, collaborative recommendat ion. Communications of the ACM, 1997,40(3):66~72.
  • 6Sarwar, B.M., Karypis, G., Konstan, J.A., et al. Application of dimension ality reduction in recommender system--a case study. In: Jhingran, A., Mason, J.M., Tygar, D., eds. Proceedings of the ACM WebKDD Workshop on Web Mining for E -Commerce. New York: ACM Press, 2000.
  • 7Sarwar, B.M., Karypis, G., Konstan, J.A., et al. Analysis of recommendati on algorithms for e-commerce. In: Proceedings of the ACM Conference on Electroni c Commerce. New York: ACM Press, 2000. 158~167.
  • 8Breese, J.S., Heckerman, D., Kadie, C. Empirical analysis of predictive a lgorithms for collaborative filtering. In: Cooper, G.F., Moral, S., eds. Proceed ings of the 14th Conference on Uncertainty in Artificial Intelligence. San Franc isco: Morgan Kaufmann Publishers, 1998. 43~52.
  • 9Aggarwal, C.C., Wolf, J.L., Wu, K., et al. Horting hatches an egg: a new raph-theoretic approach to collaborative filtering. In: Chaudhuri, S., Madigan, D., Fayyad, U., eds. Proceedings of the ACM International Conference on Knowledg e Discovery and Data Mining. New York: ACM Press, 1999. 201~212.
  • 10Sarwar, B., Karypis, G., Konstan, J., et al. Item-Based collaborative fil tering recommendation algorithms. In: Shen, V.Y., Saito, N., eds. Proceedings of the 10th International World Wide Web Conference (WWW10). 2001. 285~295.

共引文献497

同被引文献97

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部