期刊文献+

一种可逆非线性混沌保密通信系统研究 被引量:2

Researching on Performances of an Invertible Nonlinear Chaotic Communication System
下载PDF
导出
摘要 该文分析了现有各类混沌保密通信技术的基本原理及其特点,并分别介绍了一些有实用价值的典型结构, 比较了它们各自在实际应用中的性能和不足。在此基础上,提出了一种基于混沌驱动的零动态可逆离散非线性混沌通信系统。重点模拟分析了该系统的安全可靠性,防信息攻击能力,以及抗信道噪声干扰性能等,并指出了系统同步的必要性和解决途径。 All the existing chaotic communication techniques are simply classified into two catalogues, their implementation principles and characteristics are outlined, the corresponding valuable realizing schemes are introduced for comparing their advantages and disadvantages in application. Then a zero dynamical nonlinear invertible communication scheme with chaos driving is proposed. Its performances, such as encryption security, defending ciphertext attack, noise robust, etc. are extensively analysed by simulation. Its necessity to synchronization for application and the way to solve the problem are also discussed.
出处 《电子与信息学报》 EI CSCD 北大核心 2006年第4期721-727,共7页 Journal of Electronics & Information Technology
基金 CSC 澳洲ARC和香港CERG Grant CityU1115/03E资助课题
关键词 混沌通信 加密 零动态 可逆非线性 Chaos communication, Encryption, Zero dynamics, Invertible nonlinearity
  • 相关文献

参考文献25

  • 1Abel A,Schwarz W.Chaos communications:principles,schemes,and system analysis.Proc.IEEE,2002,90(5):691-709.
  • 2Liu Zhong,Tang Jun,Yu Juebang.An application of chaos:generating binary pseudorandom sequences.ISCAS 1988,California,May 31-June 3,1998,Vol.1:1-3.
  • 3Li Shujun,Chen Guanrong,Zheng Xuan.Chaos-Based Encryption for Digital Images and Videos.edited by Borko Furht and Darko Kirovski,Hong Kong,CRC Press LLC,2004,Chap.4.
  • 4Zhao D,Chen G,Liu W.A chaos-based robust wavelet domain watermarkingalgorithm.Chaos,SolitonsandFractals,2004,22:47-54.
  • 5Cuenot J B,Larger L,Goedgebuer J P,et al..Chaos shift keying with an optoelectronic encryption system using chaos in wavelength.IEEE J.of Quantum Electronics,2001,37(7):849-855.
  • 6Boccaletti S,Kurths J,Osipov G,et al..The synchronization of chaotic systems.Phys.ReportS,2002,336:1-101.
  • 7Pecora L M,Carroll T L.Synchronization in chaotic system.Phys.Rev.Lett.1990,64(8):821-824.
  • 8Aihara K,Katayama R.Chaos engineering in Japan.Communications of the A CM,1995,38(11):103-107.
  • 9Special issue on applications in modern communication systems.IEEE Trans on CASI,2001,48(12):1385-1527.
  • 10Cuomo K M,OppenheimAV,Strogatz S H.Synchronization of Lorenz-based chaotic circuits with applications to communica tions.IEEE Trans.on CASⅡ,1993,40(10):626-633.

二级参考文献5

共引文献7

同被引文献23

  • 1张平伟,唐国宁,罗晓曙.双向耦合混沌系统广义同步[J].物理学报,2005,54(8):3497-3501. 被引量:17
  • 2方锦清.非线性系统中混沌控制方法、同步原理及其应用前景(二)[J].物理学进展,1996,16(2):137-202. 被引量:117
  • 3黄丽蒂,姚婷妤,赵文艳.混沌系统的自适应变结构同步及其在保密通信中的应用[J].电路与系统学报,2006,11(2):103-106. 被引量:4
  • 4Pecora M and Carroll L. Synchronization in chaotic systems [J]. Phys. Rev. Lett., 1990, 64(8): 821-823.
  • 5Elabbasy E M, Agiza H N, and El-Dessoky M M. Controlling and synchronization of Rossler system with uncertain parameters [J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2005, 5(2): 171-181.
  • 6Pecora M and Carroll L. Driving systems with chaotic signals[J]. Phys. Rev. A, 2001, 44(4): 2374-2383.
  • 7Carroll L and Pesora M. Synchronizing chaotic circuits[J]. IEEE Trans. on CAS, 2001, 38(4): 453-456.
  • 8Kapitaniak T. Experimental synchronization of chaos using continuous control[J]. Int J. Bifurc. Chaos, 2004, 4(2): 483-488.
  • 9Yang T and Chua L O. Generalized synchronization of chaos via linear transformations[J]. Int J. Bifurc. Chaos, 1999, 9(1): 215-219.
  • 10Lorenz E N. Deterministic Nonperiodic Flow[J]. Journal of Atmosphere Science, 1963, 20(1): 130-141.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部