期刊文献+

基于多种群协同进化微粒群算法的径向基神经网络设计 被引量:19

Evolutionary design of RBF neural network based on multi-species cooperative particle swarm optimizer
下载PDF
导出
摘要 神经网络结构和权值的联合设计一直是神经网络进化设计的一个研究方向.本文根据基本微粒群算法的特点,借鉴递阶编码的思想,构造出一种多种群协同进化微粒群算法.该算法具有种群内个体微粒自由运动特征分量与种群运动特征分量分层递阶进化的特征,克服了标准微粒群算法在多峰函数寻优时出现的微粒“早熟”现象.应用该算法进行径向基神经网络隐层结构和径向基函数参数联合自适应设计,在非线性系统辨识中显示了比较好的收敛性和训练精度,同时也使网络的泛化能力和逼近精度这一对矛盾得到了比较好的协调统一. Combination design of neural network's structure and weights has been one of the research focuses in neural network's evolutionary design. In this paper, a multi-species cooperative particle swarm optimizer is proposed by combining the ideas in the standard particle swarm optimization and hierarchy method. In the new algorithm, the individual free movement of particles within the species and the species population's movement evolve in a hierarchy model. The developed algorithm overcomes the limitation of particle's "prematurity" in global optimization using the standard PSO. When this algorithm is used in the training of RBF neural network's structure and parameters, the neural network shows a satisfactory accuracy and convergence in nonlinear system identification. The resulting network is able to properly balance the relation between generation and approximation accuracy.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2006年第2期251-255,共5页 Control Theory & Applications
基金 国家自然科学基金资助项目(50274060) 湖南省教育厅科研资助项目(03C499) 湖南省杰出青年基金资助项目(02JJYB009)
关键词 微粒群算法 多种群协同进化 径向基神经网络 结构优化 particle swarm optimization multi-species cooperative RBF neural network structure optimization
  • 相关文献

参考文献13

  • 1KENNEDY J, EBERHART R. Particle swarm optimization[ C ]//Proc of IEEE Int Conf on Neural Networks. Piscataway,NJ: IEEE Press, 1995 : 1942 - 1948.
  • 2EBERHART R, KENNEDY J. A new optimizer using particles warm theory [ C ]// Proc of the 6th Int Sympsium on Micromachine and Human Science. Piscataway, NJ: IEEE Press,1995:39-43.
  • 3KENNEDY J.Tile particle swarm: Social adaptation of knowledge[ C ]//Proc of IEEE Int Conf on Evolutionary Computation. Piscataway, NJ: IEEE Press, 1997:303 -306.
  • 4SHI Yuhui, EBERHART R. A modified particle swarm optimizer[ C ]//Proc of IEEE Int Conf on Evolutionary Computation.Piscataway, NJ: IEEE Press, 1998:67 -73.
  • 5TRELEA I C. The particle swarm optimization algorithm: convergence analysis and parameter selection [J]. Information Processing Letters, 2003, 85 (9) : 317 - 325.
  • 6BERGH F, ENGELBRECHT A P. A new locally covergent particle swarm optimization [ C ]//Proc of IEEE Int Conf on System, Man and Cybernetics. Piscataway, NJ: IEEE Press,2002: 625 - 631.
  • 7谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:422
  • 8彭宇,彭喜元,刘兆庆.微粒群算法参数效能的统计分析[J].电子学报,2004,32(2):209-213. 被引量:44
  • 9ROSIN C , BELEW R, MORRIS G, et al. New methods for compititive coevolution [J]. Evolutionary Computation. 1997,5(1): 1-29.
  • 10BERGH F, ENGELBRECHT A P. A cooperative approach to particle swarm optimization [J]. IEEE Trans on Evolutionary Computation, 2004, 8(3):1 - 15.

二级参考文献59

  • 1现代数学应用手册编委会.概率统计与随机过程卷(第一版)[M].北京:清华大学出版社,2000.276-302.
  • 2[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930.
  • 3[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469.
  • 4[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100.
  • 5[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976.
  • 6[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948.
  • 7[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43.
  • 8[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994.
  • 9[4]Wilson E O. Sociobiology: The New Synthesis[M]. MA: Belknap Press,1975.
  • 10[5]Shi Yuhui, Eberhart R. A modified particle swarm optimizer[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Anchorage,1998.69-73.

共引文献495

同被引文献148

引证文献19

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部