期刊文献+

Hopfield网络的全局指数稳定性 被引量:6

Globally exponential stability for Hopfield neural networks
下载PDF
导出
摘要 在研究Hopfield神经网络时通常都假设输出响应函数是光滑的增函数.但实际应用中遇到的大多数函数都是非光滑函数.因此,本文将通常论文中Hopfield神经网络的输出响应函数连续可微的假设削弱为满足L ipschitz条件.通过引入Lyapunov函数的方法,证明了Hopfield神经网络全局指数收敛的一个充分性定理.并且由此定理获得该类网络全局指数稳定的几个判据.这定理与判据是近期相应文献主要结果的极大改进. Hopfield neural networks are usually discussed under the assumption that all output response functions are smooth and monotone increasing. However, output responses are nonsmooth in most practical applications. In this paper, continuous differentiable conditios of output response functions of Hopfied neural networks in usual papers is reduced to Lipschitz condition. A theorem on globally exponential convergence of solutions of the networks is shown by a Lapunov functional. Some new criteria on globally exponential stability of the networks are obtained. These results greatly improve the main results of recent related papers.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2006年第2期302-305,共4页 Control Theory & Applications
基金 电子科技大学重点基金资助项目 国家民委重点基金资助项目(20040816012)
关键词 HOPFIELD网络 全局指数收敛 全局指数稳定 平衡点 LIPSCHITZ条件 Hopfield neural networks globally exponential convergence globally exponentially stable equilibriumpoint Lipschitz condition
  • 相关文献

参考文献5

  • 1CAO Jinde. Global exponential stability of Hopfield neural networks[J]. Int J of Systems Science,2001,32(2) :233 -236.
  • 2ZHANG Qiang, WEI Xiaopeng, XU Jin. Global exponential stability of Hopfield neural networks with continuously distributed delays [ J ]. Physics Letters A,2003,315:431 - 436.
  • 3张继业,戴焕云,邬平波.Hopfield神经网络系统的全局稳定性分析(英文)[J].控制理论与应用,2003,20(2):180-184. 被引量:5
  • 4CHUA L O, YANG L. Cellular neural networks:theory [ J ].IEEE Trans on Circuits Systems, 1988,35 ( 10 ) : 1257 - 1272.
  • 5TAKAHASHI N. A new sufficient condition for complete stability of cellular neural networks with delay [J]. IEEE Trans on Circuits Systems 1: Fundamental Theory and Applications, 2000,47(6) :793 -799.

二级参考文献14

  • 1[1]HOPFIELD J J. Neurons with graded response have collective computational properties like those of two sate neurons [J]. Proc Natl Acad Sci USA, 1984,81(8):3088-3092.
  • 2[2]COHEN M A, GROSSBERG S. Absolute stability and global pattern formation and parallel memory storage by competitive neural networks [J]. IEEE Trans on Systems, Man, Cybernetics, 1983, 13(6): 815-821.
  • 3[3]CHUA L O, YANG L. Cellular neural networks: theory [J]. IEEE Trans on Circuits and Systems, 1988, 35(10): 1257-1272.
  • 4[4]FORTI M. On global asymptotic stability of a class of nonlinear systems arising in neural network theory [J]. J of Differential Equations, 1994, 113(1): 246-264.
  • 5[5]MICHEL A N, FARRELL J A, POROD W. Qualitative analysis of neural networks [J]. IEEE Trans on Circuits and Systems, 1989,36(2): 229-243.
  • 6[6]CAO J, ZHOU D. Stability analysis of delayed cellular neural networks [J]. Neural Networks, 1998, 11(9): 1601-1605.
  • 7[7]CAO Y J, WU Q H. A note on stability of analog neural networks with time delays [J]. IEEE Trans on Neural Networks, 1996, 7(6):1533-1535.
  • 8[8]FORTI M, TESI A. New conditions for global stability of neural networks with application to linear and quadratic programming problems [J]. IEEE Trans on Circuits and Systems-I: Fundamental Theory and Applications, 1995,42(7): 354-366.
  • 9[9]LIAO Xiaoxin. Stability of Hopfield-type neural network (I) [J]. Science in China (Series A), 1995, 38(4): 407-418.
  • 10[10]KENNEDY M P, CHUA L O. Neural networks for nonlinear programming [J]. IEEE Trans on Circuits and Systems, 1988, 35(4): 554-562.

共引文献4

同被引文献28

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部