期刊文献+

不同应力波在张开节理处的能量传递规律 被引量:21

Energy-transmitted rule of various stress waves across open joint
下载PDF
导出
摘要 通过对应力波与张开节理相互作用过程的分析,建立应力波在张开节理处传播的解析模型。利用该模型,研究正弦波、矩形波和三角形波在张开节理处的能量传递规律。研究结果表明:不同应力波在张开节理处的传递系数均随应力波幅值的增大而增大,随空隙宽度的增大而减小;当空隙宽度大于临界宽度时,能量传递系数为0;矩形波的临界宽度最大,正弦波的次之,三角形波的最小;存在一个最优入射角,当入射角等于最优入射角时,能量传递系数达到最大值。 Based on the analysis of interactions between stress waves and open joints, the analytic model of stress wave propagation across open joints was established. Using the established model, energy-transmitted rule of various stress waves across open joints such as sine wave, rectangle wave and triangle wave was investigated. Calculating results show that energy-transmitted coefficients of different stress waves increase with the increase of stress wave amplitude and decrease with the increase of gap width. There is a critical gap width which diminishes in turn from rectangle wave, sine wave to triangle wave, and there is an optimal incident angle for various stress waves with the same amplitude, duration and gap width.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第2期376-380,共5页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(50490272 50490274) 国家重点基础研究发展规划项目(2002CB412703)
关键词 应力波 张开节理 能量传递系数 临界宽度 最优入射角 stress wave open joints energy-transmitted coefficient critical width optimal incident angle
  • 相关文献

参考文献11

  • 1Michael S.Elastic wave behavior across linear slip interfaces[J].Journal of the Acoustical Society of America,1980,68(5):1516-1521.
  • 2Pyrak-Nolte L J.Seismic visibility of fractures[D].Berkeley:Department of Materials Science and Mineral Engineering,California University,1988.
  • 3Pyrak-Nolte L J.The seismic response of fractures and the interrelations among fractures[J].International Journal of Rock Mechanical and Mining Science & Geomechanical Abstract,1996,33(8):787-802.
  • 4Zhao J,Cai J G.Transmission of elastic P-waves across single fractures with a nonlinear normal deformational behavior[J].Rock Mechanics and Rock Engineering,2001,34(1):3-22.
  • 5Fourney W L,Dick R D,Fordyce D F,et al.Effects of open gaps on particle velocity measurements[J].Rock Mechanics and Rock Engineering,1997,30(2):95-111.
  • 6Fourney W L,Dick R D,Wang X J,et al.Effects of weak layers on particle velocity measurements[J].Rock Mechanics and Rock Engineering,1997,30(1):1-18.
  • 7张奇.应力波在节理处的传递过程[J].岩土工程学报,1986,8(6):99-105.
  • 8胡修文,朱瑞赓,程康.P波与沟槽充填介质的作用研究[J].爆破,2002,19(3):4-7. 被引量:2
  • 9Rinehart J S.固体中的应力瞬变[M].杨善元,译.北京:煤炭工业出版.
  • 10李宁,张平,段庆伟,Swoboda G.裂隙岩体的细观动力损伤模型[J].岩石力学与工程学报,2002,21(11):1579-1584. 被引量:22

二级参考文献16

  • 1韩贝传,王思敬.一种计算多组节理系统损伤张量的方法[J].岩石力学与工程学报,1993,12(1):46-54. 被引量:3
  • 2卢文波.应力波与可滑移岩石界面间的相互作用研究[J].岩土力学,1996,17(3):70-75. 被引量:36
  • 3[1]Lacy T E,McDowell D L,Willice P A,et al.On representation of damage evolution in continuum damage mechanics[J]. Int. J. Damage Mechanics,1997,16(1):62~96
  • 4[2]Kyoya T,Ichikama Y,Kawamoto T. A damage mechanics theory for discontinuous rock mass[A]. In:Proc. 5th Int. Conf. Num. Meth. Geomechanics[C]. Rotterdam:A. A. Balkema,1985,469~480
  • 5[3]Torquato S.Morphology and effective properties of disordered heterogeneous media[J]. Int. J. Solids Structures,1998,35:2 385~2 406
  • 6[4]Swoboda G,Yang Q. An energy-based damage model of geomaterials Ⅱ,deduction of damage evolution laws[J]. Int. J. Solids Structures,1999,36:1 735~1 755
  • 7[5]Valliappan S,Zhang W H. Dynamic analysis of rock engineering problems based on damage mechanics[A]. In:Liu H H ed. Procee- dings of International Symposium on Application of Computer Methods in Rock Mechanics and Engineering[C]. Xi(an:Shan Xi Science and Technology Press,1993,55~62
  • 8[6]Yazdchi M,Valliappan S,Zhang W H. A continuum model for dynamic damage evolution of anisotropic brittle materials[J]. Int. J. for Numerical Methods in Engineering,1996,39(9):1 555~1 583
  • 9[7]Taylor L M,Chen E P,Kuszmaul J S.Microcrack-induced damage accumulation in brittle rock under dynamic loading[J]. J. Comput. Methods Appl. Mech. Engng.,1986,55(3):301~320
  • 10[8]Chen E P,Taylor L M.Fracture of brittle rock under dynamic loading conditions[A]. In:Barta R C,Evans A G,Hasselman D P H,et al ed. Fracture Mechanics ofCeramics[C]. New York:Plenum Press,1986,175~186

共引文献29

同被引文献255

引证文献21

二级引证文献228

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部