摘要
Self-Incompatibility (SI) Is a genetic mechanism of self/non-self pollen recognition to prevent self-fertilization In many flowering plants and, In most cases, this is controlled by a multl-allellc S-locus. S-RNase and Slocus F box (SLF) proteins have been shown to be the female and male determinants of gametophytlc selfIncompatibility (GSI), respectively, In the Solanaceae, Scrophulariaceae and Rosaceae. Nevertheless, It is thought that additional factors are required for the SI response. Herein, we constructed a mature anther cDNA library from a self-Incompatible Petunia hybrida Vllm. line of the S3S3 haplotype. Using AhS2-RNase from Antirrhinum hispanicum as a bait for yeast two-hybrid screening, we found that petunia germinating pollen (PGP) S/D3 was capable of Interacting physically with the bait. However, the Interaction lacked haplotype specificity. The PGPS/D3 gene Is a single copy gene that Is expressed In tissues such as the style, ovary, pollen, and leaf. The PGPS/D3::GFP (green fluorescence protein) construct was detected In both the membrane and cytoplasm. The Implications of these findings In the operation of S-RNase-based SI are discussed.
Self-Incompatibility (SI) Is a genetic mechanism of self/non-self pollen recognition to prevent self-fertilization In many flowering plants and, In most cases, this is controlled by a multl-allellc S-locus. S-RNase and Slocus F box (SLF) proteins have been shown to be the female and male determinants of gametophytlc selfIncompatibility (GSI), respectively, In the Solanaceae, Scrophulariaceae and Rosaceae. Nevertheless, It is thought that additional factors are required for the SI response. Herein, we constructed a mature anther cDNA library from a self-Incompatible Petunia hybrida Vllm. line of the S3S3 haplotype. Using AhS2-RNase from Antirrhinum hispanicum as a bait for yeast two-hybrid screening, we found that petunia germinating pollen (PGP) S/D3 was capable of Interacting physically with the bait. However, the Interaction lacked haplotype specificity. The PGPS/D3 gene Is a single copy gene that Is expressed In tissues such as the style, ovary, pollen, and leaf. The PGPS/D3::GFP (green fluorescence protein) construct was detected In both the membrane and cytoplasm. The Implications of these findings In the operation of S-RNase-based SI are discussed.
基金
Supported by the Chinese Academy of Sciences and the National Natural Science Foundation of China (30221002).Acknowledgements The authors are grateful to Qi Xie (Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences) for help with the construction of the cDNA library and the yeast two-hybrid techniques and Tim Robbins for providing P. hybrida. The authors also thank Jiayang Li (Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences) for the pB1221-35S:GFP vector.