期刊文献+

Numerical Analysis on Magnetic-induced Shear Modulus of Magnetorheological Elastomers Based on Multi-chain Model 被引量:4

基于多链模型的磁流变弹性体剪切模量的数值分析(英文)
下载PDF
导出
摘要 Based on the magnetic interaction energy, using derivative of the magnetic energy density, a model is proposed to compute the magnetic-induced shear modulus of magnetorheological elastomers. Taking into account the influences of particles in the same chain and the particles in all adjacent chains, the traditional magnetic dipole model of the magnetorheological elastomers is modified. The influence of the ratio of the distance etween adjacent chains to the distance between adjacent particles in a chain on the magnetic induced shear odulus is quantitatively studied. When the ratio is large, the multi-chain model is compatible with the single chain model, but when the ratio is small, the difference of the two models is significant and can not be neglected. Making certain the size of the columns and the distance between adjacent columns, after constructing the computational model of BCT structures, the mechanical property of the magnetorheological elastomers composed of columnar structures is analyzed. Results show that, conventional point dipole model has overrated the magnetic-induced shear modulus of the magnetorheological elastomers. From the point of increasing the magnetic-induced shear modulus, when the particle volume fraction is small, the chain-like structure exhibits better result than the columnar structure, but when the particle volume fraction is large,the columnar structure will be better.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2006年第2期126-130,共5页 化学物理学报(英文)
关键词 Magnetorheological elastomers Shear modulus Magnetic dipole model 磁流变弹性体 剪切模量 磁偶极子
  • 相关文献

参考文献9

  • 1L.C.Davis,J.Appl.Phys.85,3348 (1999).
  • 2T.Shiga,A.Okada,and T.Kurauchi,J.Appl.Polym.Sci.58,787 (1995).
  • 3M.R.Jolly and J.D.Carlson,J.Intell.Mater.Syst.Struct.7,613 (1996).
  • 4Y.Shen,M.F.Golnaraghi and G.R.Heppler,J.Intell.Mater.Syst.Struct.15,27 (2004).
  • 5S.A.Demchuk and V.A.Kuz'min,J.Eng.Mater.Technol.75,396 (2002).
  • 6H.Dang,Y.S.Zhu,P.Q.Zhang,et al.Chin.J.Chem.Phys.18,971 (2005).
  • 7W.J.Wen,N.Wang and H.R.Ma,Phys.Rev.Lett.82,4248 (1999).
  • 8L.Zhou,W.J.Wen,P.Sheng,Phys.Rev.Lett.81,1509(1998).
  • 9X.Tang,X.Zhang and R.Tao,J.Appl.Phys.87,2634(2000).

同被引文献41

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部