期刊文献+

结合启发式函数的随机运动规划方法 被引量:7

Randomized sampling-based motion planning algorithm combined with heuristics
原文传递
导出
摘要 为有效解决位姿空间中存在狭窄通道的运动规划问题,提出一种结合启发式函数的随机运动规划方法。建立了人工势场函数,沿势场等势线方向的启发式函数避免了局部极小值问题。启发式函数与随机规划方法结合,能够引导机器人避过障碍物快速朝目标点运动。人工势场在局部极大值和最速下降方向方面的特殊性质进一步优化了算法。平面内机器人运动规划的实验表明,与原有单纯随机规划方法相比,这种结合启发式函数的随机运动规划方法在狭窄通道规划问题上性能有明显提高。 A randomized sampling based motion planning algorithm was combined with heuristics to solve difficult motion planning problems where the configuration space contains narrow passage. The local minimum problem is avoided since the heuristic function follows the contours of potential field. The planner combines the heuristic function and randomized sampling to guide the robot along a collision free trajectory. The algorithm is optimized using the local maximum value of the potential and the steepest descent direction. Experiments show that the algorithm much more effectively solves planning problems with narrow passages.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第4期580-583,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家"九七三"重点基础研究基金项目(G2002cb312205) 国家自然科学基金资助项目(60174018) 国家自然科学重大基金资助项目(90205008)
关键词 机器人 运动规划 随机采样 人工势场 启发式函数 狭窄通道 robot motion planning randomized sampling artificial potential field heuristic function narrow passage
  • 相关文献

参考文献7

  • 1Lindemann S R,LaValle S M.Current issues in sampling-based motion planning[A].Chatila R,Dario P,Khatib O.Proc 11th Int'l Symp of Robotics Research[C].Berlin,Germany:Springer-Verlag,2004.
  • 2Kavraki L,Svestka P,Latombe J C,et al.Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J].IEEE Transactions on Robotics and Automation,1996,12(4):566-580.
  • 3Hsu D,Kavraki L,Latombe J,et al.On finding narrow passages with probabilistic roadmap planners[A].Agarwal P K,Kavraka L E,Mason M T.Proceedings of the Third Workshop on the Algorithmic Foundations of Robotics on Robotics[C].Boston,USA:A K Peters,Ltd,1998.141-153.
  • 4Amato N M,Bayazit O B,Dale L K,et al.OBPRM:An obstacle-based PRM for 3D workspaces[A].Agarwal P K,Kavraka L E,Mason M T.Proceedings of the Third Workshop on the Algorithmic Foundations of Robotics on Robotics[C].Boston,USA:A K Peters,Ltd,1998.155-168.
  • 5Aarno D,Kragic D,Christensen H I.Artificial potential-biased probabilistic roadmap method[A].Proc IEEE Int'l Conf on Robotics and Automation[C].New Orleans,LA,2004.461-466.
  • 6LaValle S M,Kuffner J J.Rapidly-exploring random trees:Progress and prospects[A].Donald B,Lynch K,Rus D.Algorithmic and Computational Robotics:New Directions[C].Boston,USA:A K Peters,Ltd,2001.293-308.
  • 7Hwang Y K,Ahuja N.A potential field approach to path planning[J].IEEE Transactions on Robotics and Automation,1992,8(1):23-32.

同被引文献67

引证文献7

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部