期刊文献+

基于受控系统的分岔结构确定控制器参数

Controller Parameters Determination Based on Bifurcation Structure of Controlled System
下载PDF
导出
摘要 通过研究受控混沌系统在Poincare截面上的分岔结构特性,确定了控制器主要参数(如控制刚度、延迟反馈时间等)的取值范围,从而为有效地设计控制器实现控制目标提供了新方法.根据受控混沌系统的吸引子几何结构特征,选择适当的Poincare截面来揭示受控系统的分岔结构,并以3种经典的混沌系统为例,根据受控系统的分岔特性确定控制器参数的范围,实现了不同周期目标态的控制.数值模拟结果表明,此方法简单易行,对各种混沌控制器参数的确定非常有效,具有实用意义和参考价值. The bifurcation properties of controlled chaotic systems on the Poincare section was investigated numerically, and the ranges of the main parameters, such as the control gain and the feedback time delay, were determined to design a controller for the control aim. According to the geometrical structure features of the chaotic attractor, an appropriate Poincare section was selected to reveal the bifurcation character of the controlled chaotic system. Three typical chaotic systems were taken as examples where different desired periodic states were attained by determining the range of controller parameters according to the bifurcation features of the controlled system. The simulation results of the typical controlled chaotic systems show the validity of the proposed method with both theoretical and practical significance.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2006年第5期527-530,共4页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(10502039)
关键词 混沌控制 POINCARE截面 分岔 控制参数 chaos control Poincare mapping bifurcation controlling parameter
  • 相关文献

参考文献5

二级参考文献14

  • 1方锦清.非线性系统中混沌控制方法、同步原理及其应用前景(二)[J].物理学进展,1996,16(2):137-202. 被引量:117
  • 2吕新虎.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002.202—204.
  • 3刘耀宗,物理学报,2001年,50卷,633页
  • 4张贤达,时间序列分析.高价统计量方法,1996年,46,51页
  • 5Ott E Grebogi C, Yorke J A, Controlling chaos[J]. Phys, Rev Lett, 1990,64(1 1): 1196-1190.
  • 6Chen G, Ueta T. Bifurcation and Chaos[J]. Int. J. 1999, (9): 1465.
  • 7Chen G, Dong. Circuit and System[J]. X IEEE Trans. 1993, (4) : 591.
  • 8Li T Y,Yorke J A. Period three implies chaos[J]. Am. Math. Monthly, 1975,82(10):985-992.
  • 9Jacdson E, A, Perspectives of Nolinear Dynamics[M]. New York:Cambridge Univi. Press, 1990.21-40.
  • 10Ranada A F. Phenomenology of Chaotic motion, in Methods and Applications of Nonlimear Dynamics[M]. Singapore:World Scientific Pub, Singapore, 1986.1-93.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部