摘要
A deuterium cluster jet produced in the supersonic expansion into vacuum of deuterium gas at liquid nitrogen temperature and moderate backing pressures are studied by Rayleigh scattering techniques. The experimental results show that deuterium clusters can be created at moderate gas backing pressures ranging from 8 to 23 bar, and a maximum average cluster size of 350 atoms per cluster is estimated. The temporal evolution of the cluster jet generated at the backing pressure of 20 bar demonstrates a two-plateau structure. The possible mechanism responsible for this structure is discussed. The former plateau with higher average atom and cluster densities is more suitable for the general laser-cluster interaction experiments.
A deuterium cluster jet produced in the supersonic expansion into vacuum of deuterium gas at liquid nitrogen temperature and moderate backing pressures are studied by Rayleigh scattering techniques. The experimental results show that deuterium clusters can be created at moderate gas backing pressures ranging from 8 to 23 bar, and a maximum average cluster size of 350 atoms per cluster is estimated. The temporal evolution of the cluster jet generated at the backing pressure of 20 bar demonstrates a two-plateau structure. The possible mechanism responsible for this structure is discussed. The former plateau with higher average atom and cluster densities is more suitable for the general laser-cluster interaction experiments.
基金
This work was supported by the Key Foundation of China Academy of Engineering Physics (No. 2000Z0206) the National Natural Science Foundation of China (No. 10265057).