摘要
在W1,p(x)空间框架下研究了具有p(x)增长条件的椭圆型偏微分方程:-d iva(x,u,D u)+g(x,u,u)=f,得到了在W10,p(x)空间中弱解的存在性,推广了Boccardo等关于在Sobo lev空间中弱解的相应结论.
In this paper the elliptic partial differential equations satisfying p(x) growth conditions: - diva(x,u,Du) + g(x,u,↓△) = fare stadied in the setting of W^1,p(x) space, and the existence of weak solutions in W^10,p(x) is obtained which generalizes the corresponding work of Baccardo et al for the weak solutions in Sobolev space.
出处
《应用泛函分析学报》
CSCD
2006年第1期21-27,共7页
Acta Analysis Functionalis Applicata
基金
国家自然科学基金(19971031)
关键词
椭圆型偏微分方程
弱解
存在性
elliptic partial differential equation
existence
weak solution