期刊文献+

非线性椭圆型偏微分方程弱解的存在性 被引量:3

The Existence of Weak Solutions for Nonlinear Elliptic Partial Differential Equations
下载PDF
导出
摘要 在W1,p(x)空间框架下研究了具有p(x)增长条件的椭圆型偏微分方程:-d iva(x,u,D u)+g(x,u,u)=f,得到了在W10,p(x)空间中弱解的存在性,推广了Boccardo等关于在Sobo lev空间中弱解的相应结论. In this paper the elliptic partial differential equations satisfying p(x) growth conditions: - diva(x,u,Du) + g(x,u,↓△) = fare stadied in the setting of W^1,p(x) space, and the existence of weak solutions in W^10,p(x) is obtained which generalizes the corresponding work of Baccardo et al for the weak solutions in Sobolev space.
出处 《应用泛函分析学报》 CSCD 2006年第1期21-27,共7页 Acta Analysis Functionalis Applicata
基金 国家自然科学基金(19971031)
关键词 椭圆型偏微分方程 弱解 存在性 elliptic partial differential equation existence weak solution
  • 相关文献

参考文献8

  • 1Boccardo L,Gallouet T,Murat F.A Unified Presentation of Two Existence Results for Problems with Natural Growth [A].M.Chipot.Progress in P.D.E.,the Metz surveys 2,Reseach Notes in Mathematics[C].New York,Longman,1993,296:127-137.
  • 2DONG,Zeng-fu(董增福),FU,Yong-qiang(付永强).Convergence of gradient of solutions to elliptic equations with nonuniform growth[J].Journal of Harbin Institute of Technology(New Series),2002,9(4):351-353. 被引量:2
  • 3Fu Yongqiang.The existence of solutions for elliptic systems with nonuniform growth [J].Studia Mathmatica,2002,151(3):227-247.
  • 4Kovacik O,Rakosnik J.On spaces Lp(x) (Ω) and Wk,p(x)(Ω) [J].Czechoslovak Math J,1991,41:592-618.
  • 5Fan Xianling,Zhao Dun.A class of De Giorge type and Holder continuity[J].Nonlinear Analysis,1999,36:295-318.
  • 6Fan Xianling,Zhao Dun.The quasi-minimizer of integral functions with m(x) growth conditions[J].Nonlinear Analysis,2000,39:807-816.
  • 7Zhikov V V.Averaging of functionals of calculus of variations and elasticity theory[J].Math USSRIzv,1987,29:33-36.
  • 8Zhikov V V.On passing to the limit in nonlinear variations problem[J].Mat Sbornik,1992,183(8):47-84.

二级参考文献1

共引文献1

同被引文献20

  • 1RUZICKA M. Electrorheological fluids : modeling and mathematical theory[ M]. Berlin : Springer - Vedag, 2000.
  • 2ACERBI E, MINGIONE G. Regularity results for stationary electrorheolagical fluids[ J]. Arch Ration Mech Anal, 2002, 164:213 -259.
  • 3CHEN Y, LEVINE S,RAO M. Variable exponent, linear growth functionals in image restoration[J]. SIAM J Appl Math, 2006, 66(4) : 1383 - 1406.
  • 4BENILAN P, BOCCARDO L, GALLOUET T. An L1 theory of existence and Uniqueness of solutions for nonlinear elliptic equations [ J ]. Ann Scuo- la Norm Sup Pisa, 1995, 22(3) : 240 -273.
  • 5BOCCARDO L, GALLOUET T, ORSINA L. Existence and uniquness of entropy solutions for nonlinear elliptic equations with measure data[ J]. Ann Inst H Poincarc Anal Non Lineaire,1993, 127:134-156.
  • 6BOCCARDO L, GALLOUET T, ORSINA L. Existence and uniquness of entropy solutions for nonlinear elliptic equations with measure data[J]. Ann Inst H Poincare Anal Non Lineaire, 1993, 127:134 -156.
  • 7BOCCARDO L, GIACHTTI D. Dirichlet problems in L^1 (Ω) involving derivatives of nonlinear terms [ J ]. Journal Differential Equations, 1993, 106(2) :215 -237.
  • 8EDMUNDS D, LANG J, NEKVINDA A. On Lp^(x) norms[ J]. Proc R Soc A, 1999, 455:219 -225.
  • 9EDMUNDS D, RAKOSNfK J. Sobolev embedding with variable exponent[J]. Studia Math, 2000, 143:267 -293.
  • 10KOVACIK O, RAKOSNIK J. On spaces Lp^(x) and W^kp(x) [ J]. Czechoslovak Math J, 1991, 41 : 592 - 618.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部