期刊文献+

乘积拓扑矢量空间中的不动点定理和广义矢量平衡问题组 被引量:2

Fixed Point Theorem and System of Generalized Vector Equilibrium Problems in the Product Space of Topological Vector Spaces
下载PDF
导出
摘要 利用零调映象的一个不动点定理,在乘积拓扑矢量空间内得到了某些新的不动点定理,作为应用,在乘积拓扑矢量空间内,对一类广义矢量平衡问题组证明了一些平衡存在性定理,这些定理推广了近期文献中的一些重要的已知结果. In this paper, by applying a fixed point theorem of acyclic map, some new fixed point theorems in the product space of topological vector spaces are obtained. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems are proved in the product space of topological vector spaces. These theorems generaliz many important known results in the recent literature.
出处 《应用泛函分析学报》 CSCD 2006年第1期77-82,共6页 Acta Analysis Functionalis Applicata
基金 四川省教育厅重点科研基金([2000]25)
关键词 不动点 零调映象 允许集 广义矢量平衡组 fixed point acyclic map admissible set system of generalized vector equilibrium problems
  • 相关文献

参考文献15

  • 1Kakutani W.A generalization of Brouwer's fixed-point theorem[J].Duke Math J,1941,8:457-459.
  • 2Eilenberg S,Montgomery D.Fixed point theorems for multivalued transformations[J].Amer J Math,1946,68:214-222.
  • 3Park S.Collectively fixed point and equilibrium point of abstract economies[J].Math Sci Res Hot-Line,1997,1(11):9-13.
  • 4Nash J.Non-cooperative games[J].Ann Math,1951,54:286-293.
  • 5Aubin J P,Cellina A.Differential Inclusions[M].Springer,Berlin,1994.
  • 6Tan N X.Quasivariational inequalities in topological linear locally convex Hausdorff spaces [J].Mathematische Nachrichten,1985,122:231-245.
  • 7Klee V.Leray-Schauder theory without local convexity[J].Math Ann,1960,14:286-297.
  • 8Fan K.Fixed points and minimax theorems in loclly convex spaces[J].Proc Nat Acad Sci U.S.A,1952,38:121-126.
  • 9Massey W S.Singular Homology Theory[M].Springer-Verlag,New York,1980.
  • 10Park S.Remarks on a social equilibrium existence theorm of G.Debreu[J].Appl Math Lett,1998,11(5):51-54.

二级参考文献22

  • 1Giannessi F. Theorems of alternative, quadratic programs and complementarity problems[ A]. In: R W Cottle, F Giannessi, J -L Lions.Eds. Variational Inequalities and Complementarity Problems [C]. New York:J Wilwy Sons, 1980, 151-186.
  • 2Giannessi F. Vector Variational Inequalities and Vector Equilibria Mathematics[M].London: Kluwer Academic Publishers, 2000.
  • 3Pang J S. Asymmetric variational inequality problems over product sets:applications and iterative methods[J]. Math Programming, 1985,31(2):206-219.
  • 4Zhu D L, Marcotte P. Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities[ J]. SIAM J Optim, 1996,6(3) :714-726.
  • 5Cohen G, Chaplais F. Nested monotony for variational inequalities over product ofspaces and convergence of iterative algorithms[J]. J Optim Theory Appl,1988,59(2):360-390.
  • 6Ansari Q H, Yao J C. A fixed point theorem and its applications to a system ofvariational inequalities[J]. Bull Austral Math Soc, 1999,59(2) :433-442.
  • 7Ansari Q H, Yao J C. System of generalized variational inequalities and their applications[J]. Appl Anal,2000,76(3/4): 203-217.
  • 8Ansari Q H, Schaible S, YaoJC. System of vector equilibrium problems and their applications[J].J Optim Theory Appl,2000,107(3) :547-557.
  • 9Ding X P, Park J Y. Fixed points and generalized vector equilibrium problems in G-convex spaces [J]. Indian J Pure ApplMath,2003,34(6) :973-990.
  • 10DING Xie-ping, ParkJY. Generalized vector equilibrium problems in generalized convex space[J].J Optim Theory Appl,2004,120(2):327-353.

共引文献2

同被引文献15

  • 1Mustafa Z,Sims B.Some remarks concerning D-metric spaces[J].Proc Int Conf on Fixed Point Theory and Appl,Valencia(Spain),2003,7:189-198.
  • 2Mustafa Z,Sims B.A new approach to generalized metric spaces[J].J of Nonlinear and Convex Anal, 2006,7(2):289-297.
  • 3Dhage B C.On generalized metric spaces and topological structureⅡ[J].Pure and Applied Mathematika Sci,1994,40:37-41.
  • 4Huang L-G,Zhang X.Cone metric spaces and fixed point theorems of contractive mappings[J].J Math Anal Appl,2007,332:1468-1476.
  • 5Gnana T,Bhaskar,V Lakshmikantham,Fixed point theorems in partially ordered metric spaces and applications[J].Nonlinear Analysis,2006,65:1379-1393.
  • 6Donal O'Regan,Adrian Petrusel,Fixed point theorems for generalized contractions in ordered metric spaces[J].J Math Anal Appl,2008,341:1241-1252.
  • 7Rezapour Sh and R Hamlbarani,Some notes on the paper"Cone metric spaces and fixed point theorems of contractive mappings"[J].J Math Anal Appl,2008,345(2):719-724.
  • 8熊金诚.点集拓扑讲义[M].3版.北京:高等教育出版社,2003.
  • 9Huang L G, Zhang X. Cone metric spaces and fixed point theorems of contractive mappings E J ]- Jounal of Mathemati- cal Analysis and Apphcation,2007 ,332 :1468-1476.
  • 10Mnstafa Z, Sims B. Some remarks concerning D -metric spaces [J ]. Proceedings of Internatinal Conference on Fixed Point Theory, Valencia (Spain) ,2003 (7) : 189-198.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部