期刊文献+

基于贝叶斯原理的大洋金枪鱼渔场速预报模型研究 被引量:15

Tuna fishing grounds prediction model based on Bayes probability
下载PDF
导出
摘要 高度洄游的大洋性金枪鱼类(Scombridae)是世界远洋渔业的重要捕捞对象,中国金枪鱼生产仍处于初期发展阶段,因此研究和预测金枪鱼渔场具有重要的现实意义。本研究利用美国NASA提供的卫星遥感反演海表温度(SST)三级数据产品和太平洋共同体秘书处(SPC)提供的有关国际金枪鱼历史捕捞产量资料,分析金枪鱼同SST等海洋渔场环境要素之间的统计关系,建立了金枪鱼渔场的贝叶斯概率预报模型。通过对历史数据进行模型回报试验,结果表明太平洋鲣鱼渔场综合预报的准确性达到70%以上,对渔业捕捞生产具有一定的指导意义。 Highly migration tuna is one of the most important fishing objects of high sea fisheries of the world. At present, the tuna fishery of China is at the primary development period, and it is practically significant to engage in forecasting and studying on tuna fishing grounds. Based on three-level satellite data of SST supplied by NASA and historical tuna catch data supplied by SPC, using a geographical information system (GIS), relations between the catch of tuna and SST were studied. With this information and using the Bayesian theory approach, a tuna fishing grounds forecasting expert system was set up and was developed generating probable fishing grounds charts. Bayes models are different from generic statistical method, in which not only the model information and data information, but also transcendental information is used adequately. The result of 40 years hindcasting experiments shows that the predicting accuracy of skipjack fishing grounds in West Pacific ocean is over 70 %, which is significant to guide fishermen' fishing operation. However, because the computation period of fishing grounds transcendental probability and conditional probability is every month, it must he modified according to field survey data for future fishing grounds forecasting ever week.
出处 《中国水产科学》 CAS CSCD 北大核心 2006年第3期426-431,共6页 Journal of Fishery Sciences of China
基金 国家科技"863"高技术研究发展计划项目(项目编号:2003AA637030)
关键词 金枪鱼 渔场 贝叶斯概率 预报模型 Tuna Fishing grounds Bayes probability Prediction model
  • 相关文献

参考文献9

  • 1宇田道隆.海洋渔场学[M].东京:恒星社厚生阁发行所,1963..
  • 2毛志华,朱乾坤,潘德炉,龚芳.卫星遥感速报北太平洋渔场海温方法研究[J].中国水产科学,2003,10(6):502-506. 被引量:11
  • 3Lehodey P,Andre J M,Bertignac M,et al.Predicting skipjack tuna forage distributions in the equatorial Pacific using a coupled dynamical bio-geochemical model[J].Fish Oceanogr,1998,7:3/4,317-325.
  • 4刘树勋 韩士鑫 魏永康.判别分析在渔情预报中应用的研究[J].海洋通报,1988,7(1):63-70.
  • 5韦晟 周彬彬.黄渤海蓝点马鲛短期渔情预报的研究[J].海洋学报,1988,10(2):216-221.
  • 6沈新强,樊伟,韩士鑫,崔雪森,叶施仁.中心渔场智能预报系统的设计与实现[J].中国水产科学,2000,7(2):69-72. 被引量:22
  • 7Ichiro A,Tadashi I,Isamu M,et al.A prototype expert system for predicting fishing condition of anchovy (Engraulidae) off the coast of Kanagawa Prefeture[J].Nippon Suisan Gakkaishi,1989,55(10):1 777-1 783.
  • 8Laurent D,Michel P,Stretta J M.Simulation of large scaletropical tuna movements in relation with daily remote sensing data:the artificial life approach[J].Biosystems,1997,44:167-180.
  • 9Nieto K,Y nez E,Silva C.Probable fishing grounds for anchow in the northern Chile using an expert system[A].IGARSS,International Geoscience and Remote Sensing Symposium[C].Sidney,IEEE,2001.9-13.

二级参考文献15

  • 1朱德林,黄传平,商金发.东海北部秋汛灯围渔情预报的研究[J].海洋渔业,1993,15(3):105-108. 被引量:3
  • 2苗振清.东海北部近海夏秋季鲐鲹渔场与海洋水文环境的关系[J].浙江水产学院学报,1993,12(1):32-39. 被引量:21
  • 3朱德坤,陈阿毛.冬季嵊山带鱼中心渔场与高盐水舌锋位置的关系[J].水产学报,1980,4(1):63-70. 被引量:5
  • 4夏世福.渔情预报评分方法的探讨[J].水产科技情报,1979,6(5):6-10. 被引量:1
  • 5McMillin L M, Crosby D S. Theory and validation of the multiple window sea surface temperature technique [J].J C, eophys Res,1984, 89:3 655 -3 661.
  • 6McClain E P, Pichel W G, Walton C C. Comparative performance of AVHRR based multichannel sea surface temperatures [ J ]. J Geophys Res, 1985,90:11 587 - 11 601.
  • 7Walton C C. Nonlinear multichannel algorithms for estimating sea surface temperature with AVHRR satellite data[ J]. J App Meteor, 1988,27 : 115 - 124.
  • 8Walton C C, Pichel W G, Sapper F J, et al. The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with NOAA polar - orbiting environmental satellites [J]. J Geophys Res, 1998, 103:27 999 -28 012.
  • 9Kilpatrick K A, Pedesta G P, Evans R. Overview of the NOAA advaced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database [ J ]. J Geophys Res,2001, 106:9 179-9 197.
  • 10Simpson J J, Mcintire T J, Stitt J R, et al. Improved cloud detecting in AVHRR daytime and night - time scenes over the ocean[J]. Int J Remote Sensing, 2001,22: 2 585 -2 615.

共引文献36

同被引文献287

引证文献15

二级引证文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部