期刊文献+

一类矩阵值小波包的刻划 被引量:3

Characterization of a class of matrix-valued wavelet packets
下载PDF
导出
摘要 推广了正交小波包的概念.给出一类矩阵值正交小波包的定义及其构造,讨论了矩阵值正交小波包的性质,由矩阵值正交小波包得到了空间L2(R,Cs×s)的一个新的正交基. The concept of orthogonal wavelet packets was generalized. The definition and the construction of a class of orthogonal matrix-valued wavelet packets was given. The properties of matrix-valued wavelet packets was discussed. A new orthogonal basis of L^2(R,C^s×s) was derived from the orthogonal matrix-valued wavelet packets.
出处 《兰州理工大学学报》 CAS 北大核心 2006年第2期143-146,共4页 Journal of Lanzhou University of Technology
基金 河南省自然科学基金(021104480)
关键词 正交 矩阵值多分辨分析 矩阵值尺度函数 矩阵值小波包 矩阵伸缩方程 orthogonality matrix-valued multiresolution analysis matrix-valued scaling functions matrix valued wavelet packets matrix dilation equation
  • 相关文献

参考文献7

  • 1CHUICK.程正兴译.小波分析导论[M].西安:西安交通大学出版社,1994..
  • 2MARTIN M B,BELL A E.New image compression technique using multwavelet packets[J].IEEE Trans Image Processing,2001,10(4):500-511.
  • 3BEYLKIN G.Wavelets and Their Applications[C].Boston:Jones and Barlett,1992.153-178.
  • 4杨守志,程正兴.a尺度多重正交小波包[J].应用数学,2000,13(1):61-65. 被引量:35
  • 5XIA X G,SUTER B W.Vector-valued wavelets and vector fiter banks[J].IEEE Trans Signal Processing,1996,44:508-518.
  • 6FOWLER J E,HUA L.Wavelet transforms for vector fields using omnidirectionally balanced multiwavelets[J].IEEE Trans Signal Processing,2002,50:3 018-3 027.
  • 7XIA X G,GERONIMO J S,HARDIN D P,et al.Design of prefilters for discrete multiwavelet transforms[J].IEEE Trans Signal Processing,1996,44:25-35.

二级参考文献3

  • 1Lian J A,Appl Comput Harman Anal,1998年,4卷,5期,277页
  • 2Chui C K,J Appl Numer Math,1996年,20卷,3期,273页
  • 3杨守志,杨晓忠,程正兴.正交小波包的构造[J].Journal of Mathematical Research and Exposition,1997,17(2):219-224. 被引量:14

共引文献35

同被引文献18

  • 1陈清江,程正兴,韩金仓.二元不可分双正交小波包的性质[J].兰州理工大学学报,2005,31(2):126-129. 被引量:7
  • 2ZHANG N,WU X. Lossless compression of color mosaic images[J].IEEE Trans Image Processing, 2006, 15(16): 1379- 1388.
  • 3EFROMOVICH S, LAKEY J, PEREYIA M, et al. Data-diven and optimal denoising of a signal and recovery of its derivation using multiwavelets [J]. IEEE Trans Signal Processing, 2004, 52 (3) : 628-635.
  • 4DENG H, LING H. Fast solution of electromagnetic integral equations using adaptive wavelet packet transform [J]. IEEE Transactions on Antennas and Propagation, 1999,47 (4):674- 682.
  • 5BACCHELLI S, COTRONEI M, SALTER T. Wavelets for multiehannel signals [J]. Adv Appl Math, 2002,29: 581-598.
  • 6MICCHELLI C A, SAUER T. On vector subdivision [J]. Math Z, 1998,229 : 621-674.
  • 7EFROMOVICH S, LAKEY J, PEREYIA M C, et al. Data-di- yen and optimal denoising of a signal using multiwavelets [J]. IEEE Trans Signal Processing, 2004,52(3) :628-635.
  • 8MARTIN M B,BELL A E. New image compression technique using multiwavelet packets[J]. lEES Trans Image Process- ing, 2001,10(4) : 500-511.
  • 9CHUI C K, LI Chun. Nonorthonormal wavelet packets [J].SI- AM Math Anal, 1993,24(3):712-738.
  • 10SHEN Z. Nontensor product wavelet packets in Lz (R) [J].SIAM Math Anal, 1995,26(4) :1061-1074.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部