期刊文献+

基于偏最小二乘回归的纹理特征线性组合

Linear Combination of Texture Features Based on Partial Least Square Regression
下载PDF
导出
摘要 基于偏最小二乘回归技术对纹理特征进行线性组合,得到新的纹理特征来进行分类。实验表明,组合后的纹理特征不但提高了纹理分类的性能,而且具有一定的数据自适应能力。 The paper presents partial least squares (PLS) method. Firstly, texture features (spectrum (TS) and gray-level co-occurrence matrix (GLCM)) are calculated from local image regions. Secondly, the authors apply PLS regression to preparatory texture features to extract linear combined new texture features. Thirdly, both the linear combined texture features and the preparatory texture features, together with the ordinary texture features, are imported into linear discrimination analysis (LDA) and quadratic discrimination analysis (QDA). Finally, classification results are compared and conclusions are drawn. The experiments show that not only PLS can reduce the dimension of texture features but also the combined texture features efficiently have better discrimination abilities than the ordinary texture features.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2006年第5期399-402,共4页 Geomatics and Information Science of Wuhan University
关键词 特征组合 特征选择 共生矩阵 纹理谱 偏最小二乘回归 feature combination feature selection GLCM texture spectrum partial least square regression
  • 相关文献

参考文献10

  • 1Martino P.Texture Analysis for Urban Pattern Recognition Using Fine-resolution Panchromatic Satellite Imagery[J].Geographical and Environmental Modelling,2000,4(1):43-63
  • 2李德仁,张继贤.影象纹理分析的现状和方法(一)[J].武测科技,1993(3):30-37. 被引量:13
  • 3Arivazhagan S,Ganesan L.Texture Classification Using Wavelet Transform[J].Pattern Recognition Letters,2003,24:3 197-3 203
  • 4Manesh K,Chatterji B N,Biswas P K.Cosine-modulated Wavelet Based Texture Features for Content-based Image Retrieval[J].Pattern Recognition Letters,2004,25:391-398
  • 5Singh M,Singh S.Texture Algorithms:Performance Variability Across Data Sets[J].Cybernetics and Systems,2003,34:1-17
  • 6Manish H B,Liu J J,John F M.Image Texture Analysis:Methods and Comparisons[J].Chemometrics and Intelligent Laboratory Systems,2004,72:57-71
  • 7Gao Ling,Ren Shouxin.Simultaneous Spectrophotometric Determination of Four Metals by the Kernel Partial Least Squares Method[J].Chemometrics and Intelligent Laboratory Systems,1999,45:87-93
  • 8Ross F W,Paul T J,Dennis L.Genetic Algorithm Optimization of Adaptive Multi-scale GLCM Features[J].International Journal of Pattern Recognition and Artificial Intelligence,2003,17(1):17-39
  • 9He Dongchen,Wang Li.Texture Unit,Texture Spectrum,and Texture Analysis[J].IEEE Trans on Geoscience and Remote Sensing,1990,28(4):509-512
  • 10Heisele B,Serre T,Prentice S,et al.Hierarchical Classification and Feature Reduction for Fast Face Detection with Support Vector Machines[J].Pattern Recognition,2003,36:2 007-2 017

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部