期刊文献+

图的距离不大于β的任意两点可区别的边染色 被引量:96

D(β)-Vertex-Distinguishing Proper Edge-Coloring of Graphs
原文传递
导出
摘要 本文提出了图的距离不大于β的任意两点可区别的边染色,即D(β)-点可区别的边染色(简记为D(β)-VDPEC).并得到了一些特殊图类,如圈、完全图、完全二部图、扇、轮、树以及一些联图的D(β)-点可区别的边色数,文后提出了相关的猜想. In this paper, we present a new concept of the D(β)-vertex-distinguishing proper edge-coloring of graphs (briefly, D(β)-VDPEC of graphs) and, meanwhile, have obtained the D(β)-VDPEC chromatic number on some families of graphs such as cycles,complete graphs, complete bipartite graphs, fans, wheels, trees conjecture is proposed.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2006年第3期703-708,共6页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(40301037)
关键词 正常边染色 D(β)-点可区别的边色数 graph proper edge-coloring D(β)-vertex-distinguishing edge-chromatic number
  • 相关文献

参考文献1

二级参考文献21

  • 1Tutte W. A homotopy theorem for matroids Ⅰ, Ⅱ. Trans AMS, 1958, 88: 144-160; 161-174.
  • 2Vismara P. Union of all the minimum cycle bases of a graph. Electronic J Combin, 1997, 4 #9:15.
  • 3Voss V -J. Cycles and bridges in graphs. Dordrecht: Kluwer, 1990.
  • 4Welsh C J A. Matroid theory. Acad Press, 1976.
  • 5White A L. Theory of matroids. Cambridge Univ Press, 1986.
  • 6White A L, Combinatorial geometries. Cambridge Univ Press, 1987.
  • 7White A L. Matroids application. Cambridge Univ Press, 1992.
  • 8Whitney H. On abstract properties of linear dependence. Amer J Math, 1935, 57:509-533.
  • 9Bondy J A, Murty U S R. Graph theory with applications. London: Macmillan, 1978.
  • 10Casell A C, et al. Cycle bases of mininmm measure for the strural analysis of skeletal structures by the flexibility method. Proc Roy Soc London Ser A, 1976, 35:61-70.

同被引文献446

引证文献96

二级引证文献252

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部