期刊文献+

稀疏贝叶斯及其在时间序列预测中的应用 被引量:7

Sparse Bayesian and Its Application to Time Series Forecasting
下载PDF
导出
摘要 阐述了稀疏贝叶斯方法在时间序列预测中应用的理论基础,将稀疏贝叶斯方法应用于Log istic方程产生的混沌时间序列和发动机油滑数据的预测,并与支持向量机(SVM)和RBF神经网络时间序列预测进行了比较.实验结果表明,稀疏贝叶斯方法不仅具有SVM的性能,而且比SVM使用更少的核函数,取得了较好的预测效果. The basic theoretic analysis of sparse Bayesian method in time series forecasting is introduced. Chaotic time series produced by Logistic equation and some type of engine lubrication time series are used for feasibility validation. In order to show its superiority, support vector machine (SVM) and RBF neural networks forecaster are also used during numerical simulations. Examples show that sparse Bayesian classification achieves comparable recognition accuracy to the SVM, and also requires substantially fewer kernel functions. Experimental results show the better performance in forecasting.
出处 《控制与决策》 EI CSCD 北大核心 2006年第5期585-588,共4页 Control and Decision
基金 国家自然科学基金项目(60175011 60375011) 中国科技大学科学研究发展基金项目(030501F)
关键词 稀疏贝叶斯 支持向量机 非线性预测 RBF神经网络 Sparse Bayesian classification Support vector machine Nonlinear forecasting RBF neural network
  • 相关文献

参考文献8

二级参考文献18

  • 1许飞云,贾民平,钟秉,林黄仁.旋转机械振动故障诊断的一种模糊神经网络方法研究[J].振动工程学报,1996,9(3):213-219. 被引量:20
  • 2杨璐,洪家荣,黄梯云.将TD方法同神经网络相结合进行时间序列实时建模预测[J].计算机学报,1996,19(9):695-700. 被引量:8
  • 3[1]Xu Kiyzak,Oja.Rival penalized competitive learning for clustering analysis,RBF net,and curve detection.IEEE Trans.Neural Networks,1993,4(4):636~649.
  • 4[2]J.Barry Gomm,Ding Li Yu.Selecting radial basis function network centers with recursive orthogonal least squares training.IEEE Trans.Neural Networks,2000,11(2):306~314.
  • 5Gencay R, Tung Liu. Nonlinear Modeling and Prediction with Feedforward and Recurrent Networks. Physica D, 1997,108 : 119-134.
  • 6Deco G,Obradovic D. Decorrelated Hebbian Learning for Clustering and Function Approximation. Neural Computation, 1995 (7) :338-348.
  • 7Platt J. Learning by Combining Memorization and Gradient Descent. In Advances in Neural Information Processing Systems, 1996.
  • 8Maguire L P, Roche B, Mcginnity T M, Mcdaid L J. Predicting a Chaotic Time Series Using a Fuzzy Neural Network. Information Sciences, 1998,112:125-136.
  • 9Vapnik V N. Statistical Learning Theory. NewYork, Springer,1998.
  • 10Suykens J A K, Vandewalle J, Moor D B. Optimal Control by Least Squares Support Vector Machines. Neural Networks, 2001,14(1) :23-35.

共引文献86

同被引文献64

引证文献7

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部