期刊文献+

Frequency Assignment through Combinatorial Optimization Approach 被引量:1

Frequency Assignment through Combinatorial Optimization Approach
下载PDF
导出
摘要 An L(2, 1)-labeling of a graph G is a function f from the vertex set V(G) to the set of all nonnegative integers such that |f(x) - f(y)| 〉 2 if d(x, y) = 1 and |f(x)-f(y)| ≥ 1 ifd(x, y) = 2. The L(2, 1)-labeling number λ(G) of G is the smallest number k such that G has an L(2, 1)-labeling with max{f(v) : v ∈ V(G)} = k. We study the L(3, 2, 1)-labeling which is a generalization of the L(2, 1)-labeling on the graph formed by the (Cartesian) product and composition of 3 graphs and derive the upper bounds of λ3(G) of the graph. An L(2, 1)-labeling of a graph G is a function f from the vertex set V(G) to the set of all nonnegative integers such that |f(x) - f(y)| 〉 2 if d(x, y) = 1 and |f(x)-f(y)| ≥ 1 ifd(x, y) = 2. The L(2, 1)-labeling number λ(G) of G is the smallest number k such that G has an L(2, 1)-labeling with max{f(v) : v ∈ V(G)} = k. We study the L(3, 2, 1)-labeling which is a generalization of the L(2, 1)-labeling on the graph formed by the (Cartesian) product and composition of 3 graphs and derive the upper bounds of λ3(G) of the graph.
作者 邵振东
出处 《Northeastern Mathematical Journal》 CSCD 2006年第2期181-187,共7页 东北数学(英文版)
关键词 channel assignment L(2 1)-labeling graph product graph composition channel assignment, L(2, 1)-labeling, graph product, graph composition
  • 相关文献

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部