期刊文献+

四种群食物链方程的整体渐近稳定性 被引量:5

Global Asymptotic Stability of Four-species Food-chain Systems
下载PDF
导出
摘要 本文考虑具有时滞的四种群食物链反应扩散方程。给出了在一定条件下解的存在性和平衡态方程正解的整体渐近稳定性。由此可以得到解的持久性,平凡解和所有半平凡解的不稳定性。 This paper is concerned with four species food-chain reaction-diffusion systems with time delays. Obtained are some conditions for the existence of solutions and global asymptotic stability of a positive steady-state solution. The result of global asymptotic stability implies that the solution is permanent, and trivial and all semitruvial solutions are unstable.
出处 《工程数学学报》 CSCD 北大核心 2006年第3期407-413,共7页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(50113630 10371096 10571115) 教育部优秀青年教师资助计划
关键词 食物链方程 时滞 稳定性 上下解 food-chain systems time delays stability upper and lower solutions
  • 相关文献

参考文献9

  • 1Cosner C,Lazer A C.Stable coexistece states in the Volterra-Lotka competition model with diffusion[J].SIAM J Appl Math,1984;44:1112-1132
  • 2Leung A,Clark D C.Bifurcations and large-time asymptotic behavior for prey-predator reaction-diffusions with Dirichlet boundary data[J].J Differential Equations,1980;35:113-127
  • 3Ruan W H,Feng W.On the fixed point index and multiple steady-state solutions of reaction diffusion systems[J].Differential Integral Equations,1995;8:371-392
  • 4Lakos N.Existence of steady-state solutions for a one-predator-two-prey system[J].SIAM J Math Anal,1990;21:647-659
  • 5Freedman H I,Waltman P.Persistence in a model of three interacting predator-prey populations[J].Math Biosci,1985;73:89-101
  • 6Pao C V.Convergence of solutions of reaction-diffusion systems with time delays[J].Nonlinear Anal,2002;48:349-362
  • 7Feng W.Coexistence,stability,and limiting behavior in a one-predator-two-prey model[J].J Math Anal Appl,1993;179:592-609
  • 8Pao C V.Nonlinear Parabolic and Elliptic Equations[M].Plenum:New York,1992
  • 9Feng W.Permanence effect in a three species food chain model[J].Appl Anal,1994;54:195-209

同被引文献35

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部