期刊文献+

具有阶段结构和时滞比率依赖的捕食系统的持续生存和稳定性(英文) 被引量:3

Permanence and Stability in a Delayed Ratio-Dependent Predator-Prey System with Stage Structure for Predator
下载PDF
导出
摘要 本文研究了一类带有时滞和对捕食者进行分阶段的比率依赖的捕食模型,得到了该模型中的种群的持续生存的充分条件。通过构造Lyapunov泛函的方法,得到了该模型唯一正平衡点的局部稳定和全局稳定的充分条件。 A delayed ratio-dependent predator-prey model with stage-structure for predator is pro posed and analyzed. Mathematical properties of the model equations with regard to boundedness of solutions and stability of the boundary equilibrium are analyzed; Sufficient conditions for permanence are derived. By constructing Lyapunov functionals, we obtain conditions which guarantee the local and global asymptotic stability of a positive equilibrium of the model.
出处 《工程数学学报》 CSCD 北大核心 2006年第3期537-542,共6页 Chinese Journal of Engineering Mathematics
基金 The National Natural Science Foundation of China(10471117)
关键词 阶段结构 持续生存 稳定性 时滞 李业谱若夫泛函 stage-structure permanence stability time delay Lyapunov functional
  • 相关文献

参考文献10

  • 1Aiello W G,Freedman H I.A time-delay model of single-species growth with stage structure[J].Mathematical Biosciences,1990,101:139-153
  • 2Freedman H I,Wu J.Persistence and global asymptotical stability of single species dispersal model with stage structure[J].Quarterly Applied Mathematic,1991,49:351-371
  • 3Aiello W G,Freedman H I,Wu J.Analysis of a model representing stage-structured population growth with state-dependent time delay[J].SIAM Journal of Applied Mathematic,1992,52(3):855-869
  • 4Song X,Cai L,Neumann U.Ratio-dependent predator-prey system with stage structure for prey[J].Discrete and Continuous Dynamical System-Series B,2004,4(3):749-760
  • 5Wang W,Mulone G,Sulem F,salone V.Permanence and stability of a stability of a stage-structured predator-prey model[J].Journal of Mathematical Analysis and Applications,2001,262:499-528
  • 6Song X,Chen L.Optimal harvesting and stability for a predator-prey system with stage structure[J].Acta Mathematical Application Sinica,2002,18(3):307-314
  • 7Gourley S A,Kuang Y.A stage structured predator-prey model and its dependence on maturation delay and death rate[J].Mathematical Biology,2004,49:188-200
  • 8Beretta E,Kuang Y.Global analysis in some delayed ratio-dependent predator-prey system[J].Nonliear Analysis,1998,32:381-408
  • 9Kuang Y.Delay Differential Equations with Applications in Population Dynamics[M].London:Academic Press,1993
  • 10Hutson V.The existence of an equilibrium for permanent systems[J].SIAM Journal of Applied Mathematic,1990,20(4):1033-1040

同被引文献20

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部