期刊文献+

基于粗糙集的基本名词短语识别 被引量:2

Base Noun Phrase Identification Using Rough Sets-based Learning
下载PDF
导出
摘要 本文提出了一种基于粗糙集的基本名词短语(BaseNP)识别方法。该方法首先进行BaseNP标注,然后实现BaseNP识别。它把BaseNP标注看作一个决策问题用粗糙集理论解决,因而具有特征约简和规则优化的特点。文章介绍了基于粗糙集的规则学习方法和相应的算法,同时也给出了BaseNP标注和识别的算法流程,提出了解决实例冲突问题的方法,并提高了识别效果。文章最后给出了详细的实验步骤和结果,并与几个典型系统进行了比较与分析,提出了进一步改进的方向。 An approach of base noun phrase (BaseNP) identification based on rough sets is proposed in this paper. It divides BaseNP identification into two ordinal subtasks : tagging and identification, and regards BaseNP tagging as a decision-making problem which can be solved in rough sets theory. So it characters feature reduction and rule optimization. In the paper, rough sets-based rule learning method and relevant algorithms are briefly introduced at first, the flow charts of BaseNP tagging and identification are then described, and the solution to the instance collision is put forward for improving the performance of BaseNP identification. The detailed experimental steps and results, and the comparison with some representative similar systems are given at last. According to the analysis of the results, the paper also points out the direction of further improvement of the approach.
出处 《中文信息学报》 CSCD 北大核心 2006年第3期14-21,共8页 Journal of Chinese Information Processing
基金 国家自然科学基金资助项目(60372038)
关键词 人工智能 自然语言处理 基本名词短语 粗糙集 机器学习 规则方法 算法 artificial intelligence natural language processing base noun phrase rough sets machine learning rulebased method algorithm
  • 相关文献

参考文献7

  • 1Kupiec,Julian.An algorithm for finding noun phrase correspondences in bilingual corpora[A].In:proceedings of the 31st Annual Meeting of ACL[C],1993,17 -22.
  • 2Cardie and D Pierce.Error-driven pruning of treebank gammas baseNP identification[A].In:proceedings of the 36th International Conference on Computational Linguistics[C],1998,218 -224.
  • 3Ramshaw L and Marcus M.Text chunking using transformation-based learning[A].In:proceedings of the Third Workshop on Very Large Corpora[C],1995,82 -94.
  • 4Endong Xun.A unified statistical model for the identification of English baseNP[A].In:proceedings of the38th Annual Meeting of the Association for Computational Linguistics[C],2000,104 -111.
  • 5Shlomo Argamon,I do Dagan,and Yuval Krymolowski.A memory-based approach to learning shallow natural language patterns[A].In:proceedings of the 36th Annual Meeting of the Association for Computational Linguistics[C],1998,67-73.
  • 6Erik F.Tjong Kim Sang and Jorn Veenstra.Representing text chunks[A].In:proceedinge of the 9th Conference of the European Chapter of the Association for Computational Linguistice[C],1999,173 -179.
  • 7Erik F Tjong Kim Sang.Noun phrase representation by system combination[A].In:proceedings of ANLPNAACL 2000[C],Seattle,WA,USA,2000,50-55.

同被引文献18

  • 1马建军.基于规则和统计的机器翻译方法歧义问题比较分析[J].大连理工大学学报(社会科学版),2010,31(3):114-119. 被引量:8
  • 2吕琳,刘玉树.最大熵和Brill方法结合识别英语BaseNPs[J].北京理工大学学报,2006,26(6):500-503. 被引量:6
  • 3游斓.基于转换的基本名词短语识别[C].复旦大学·政学者论文集,2002:236-245.
  • 4梁颖红,赵铁军,翟舒.规则和边界统计相结合的英语基本名词短语识别[C].语言计算与基于内容的文本处理——全国第七届计算语言学联合学术会议论文集,2003.
  • 5Gareev R, Tkachenko M, Solovyev V, et al. Intro- ducing baselines for russian named entity recogni-tionE C . Computational Linguistics and Intelligent Text Processing. Springer Berlin Heidelberg, 2013 : 329 - 342.
  • 6Lafferty J, McCallum A, Pereira F C N. Conditional random fields:probabilistic models for segmenting and labeling sequence data[J]. 2001:139 - 141.
  • 7Xun E, Huang C, Zhou M. A unified statistical model for the identification of English baseNP E CJ. Proceedings of the 38th Annual Meeting on Association for Computational Linguistics. Associ- ation for Computational Linguistics, 2000: 109 - 116.
  • 8. Sang E F. Noun phrase recognition by system com- bination [ C ]. Proceedings of the 1 st North Ameri- can chapter of the Association for Computational Linguistics conference. Association for Computa- tional Linguistics ,2000:50 - 55.
  • 9王晓涓,赵春.最大熵方法在英语名词短语识别中的应用研究[J].计算机仿真,2011,28(3):414-417. 被引量:2
  • 10谭魏璇,孔芳,倪吉,周国栋.基于混合统计模型的中文基本名词短语识别[J].计算机应用与软件,2011,28(8):254-256. 被引量:3

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部