期刊文献+

极小不可满足公式在多项式归约中的应用 被引量:24

Applications of Minimal Unsatisfiable Formulas to Polynomially Reduction for Formulas
下载PDF
导出
摘要 合取范式(CNF)公式F是极小不可满足的,如果F不可满足,并且从F中删去任意一个子句后得到的公式可满足,(r,s)-CNF是限制CNF公式中每个子句恰有r个不同的文字,且每个变元出现的次数不超过s次的公式类,对应的满足性问题(r,s)-SAT指实例公式限制于(r,s)-CNF.对于正整数r≥3,有一个临界函数f(r),使得(r,f(r))-CNF中的公式都是可满足的,而(r,f(r)+1)-SAT却是NP-完全的.函数f是否可计算是一个开问题,除了知道f(3)=3,f(4)=4外,只能估计f(r)的界.描述了极小不可满足公式在CNF公式类之间转换中的作用.为使转换过程中引入较少的新变元,给出了CNF公式到3-CNF公式的一种新的转换方法,对于长度为l(>3)的子句,仅需引入???2l???个新变元.并且,给出了CNF到(r,s)-CNF公式转换以及(r,s)-CNF中不可满足公式构造的原理和方法. A conjunctive normal form (CNF) formula F is minimal unsatisfiable if F is unsatisfiable and the resulting formula removing any clause from F is satisfiable. (r,s)-CNF is a subclass of CNF in which each clause of formula has exactly r distinct literals and every variable occurs at most s times. The corresponding satisfiable problem (r,s)-SAT means that the instances are restricted in (r,s)-CNE For positive integer r≥3, there exists a critical functionf(r) such that all formulas in (r,f(r))-CNF are satisfiable, but (r,f(r)+1)-SAT is already NP-Complete It is open whether or not the function f is computable. One can only estimate some bounds of fir) except for f(3)=3 and f(4)=4. In this paper, the applications of minimal unsatisfiable formulas are described for transformations between CNF formulas. A new algorithm is presented to introduce less new variables in transformation from CNF to 3-CNF, which for clauses with length/(〉3) only [l/2] new variables are introduced. The principle and method for transforming CNF to (r,s)-CNF and constructing unsatisfiable formulas in (r,s)-CNF are presented.
作者 许道云
出处 《软件学报》 EI CSCD 北大核心 2006年第5期1204-1212,共9页 Journal of Software
基金 国家自然科学基金 贵州省高层次人才科研条件特助基金 贵州省省长基金~~
关键词 极小不可满足公式 问题 多项式归约 NP-完全 公式构造 minimal unsatisfiable formula SAT-problem polynomiaUy reduction NP-completeness construction offormula
  • 相关文献

参考文献1

二级参考文献11

  • 1Szeider S. Homomorphisms of conjunctive normal forms. Discrete Applied Mathematics, 2003,130(2):351-365.
  • 2Papadimitriou CH, Wolfe D. The complexity of facets resolved. Journal of Computer and System Sciences, 1988,37(1):2-13.
  • 3Aharoni R. Minimal non-two-colorable hypergraphs and minimal unsatisfiable formulas. Journal of Combinatorial Theory, 1996,43(A):196-204.
  • 4Davydov G, Davydova I, Büning HK. An efficient algorithm for the minimal unsatisfiability problem for a subclass of CNF. Annals of Mathematics and Artificial Intelligence, 1998,23(3-4):229-245.
  • 5Fleischner H, Kullmann O, Szeider S. Polynomial-Time recognition of minimal unsatisfiable formulas with fixed clause-variable difference. Theoretical Computer Science, 2002,289(1):503-516.
  • 6Büning HK, Zhao XS. Polynomial time algorithms for computing a representation for minimal unsatisfiable formulas with fixed deficiency. Information Processing Letters, 2002,84(3):147-151.
  • 7Büning HK, Xu DY. The complexity of homomorphisms and renamings for minimal unsatisfiable formulas. Annals of Mathematics and Artificial Intelligence, 2005,43(1-4):113-127.
  • 8Szeider S. How to Prove Unsatisfiability by Homomorphisms. Discrete Applied Mathematics, 2003,130(2):351-365.
  • 9Büning HK. On subclasses of minimal unsatisfiable formulas. Discrete Applied Mathematics, 2000,107(1-3):83-98.
  • 10Bondy J A, Murty USR. Graph Theroy with Applications. London: Macmillan, 1996.

共引文献5

同被引文献102

引证文献24

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部