期刊文献+

二维Kagome格子光子晶体禁带的数值模拟 被引量:13

Numerical Simulation of the Photonic Bandgap of Two-dimensional Photonic Crystals with Kagome Lattice
下载PDF
导出
摘要 采用平面波展开法模拟计算了由空气背景中的介质柱构成的二维Kagome格子光子晶体的能带结构,得到了使完全光子禁带最大化的结构参量·计算结果表明:由圆形、正六边形和正四边形三种不同形状锗介质柱构成的Kagome格子光子晶体都出现了完全光子禁带,最大禁带分别为Δ=0.014(ωa/2πc)、Δ=0.013(ωa/2πc)、Δ=0.011(ωa/2πc)·发现由圆形和正六边形两种介质柱构成的Kagome格子光子晶体在填充比连续变化的较大的范围内都有宽度较为稳定的完全禁带,且它们具有非常相似的能带结构· Plane wave expansion method was employed to simulate the bandgap of 2-D photonic crystals with Kagome lattice. The optimum structural parameters of photonic crystals with the largest complete bandgap were obtained. Complete bandgaps were obtained when the germanium columns were in the shape of circular, hexagonal and square, respectively. It is showed that the complete bandgaps can be attained steadily as the filling fraction is changed in a wide range for circular and hexagonal columns, and their band structures are similar.
出处 《光子学报》 EI CAS CSCD 北大核心 2006年第5期724-728,共5页 Acta Photonica Sinica
基金 国家自然科学基金 TiAl基合金固体渗硅层的形成及抗氧化机理研究(批准号:50171046)资助项目
关键词 光子晶体 光子禁带 平面波展开法 Kagome格子 Photonie erystals Photonic bandgap Plane wave expansion method Kagome lattice
  • 相关文献

参考文献16

  • 1Yablonovitch E.Inhibited spontaneous emission in solid-state physics and electronics.Phys Rev Lett,1987,58(20):2059~2062.
  • 2John S.Strong localization of photons in certain disordered dielectric superlattices.Phys Rev Lett,1987,58(23):2486~2489.
  • 3李岩,郑瑞生,田进寿,冯玉春,牛憨笨.一种类分形结构光子晶体的能带[J].光子学报,2004,33(10):1218-1221. 被引量:9
  • 4Busch K,John S.Photonic band gap formation in certain self-organizing systems.Phys Rev (E),1998,58(3):3896~3908.
  • 5Zhang Z,Satpathy S.Electromagnetic wave propagation in periodic structures:Bloch wave solution of Maxwell's equations.Phys Rev Lett,1990,65(21):2650~2653.
  • 6崔应留,蔡祥宝.缺陷态复周期光子晶体的特性研究[J].光子学报,2004,33(6):704-707. 被引量:9
  • 7Krauss T F,De La Rue RM,Brand S.Two dimensional photonic-bandgap structures operating at nearinfrared wavelengths.Nature,1996,383(6602):699~702.
  • 8Mekata M.Kagome:The story of the basketweave lattice.Physics Today,2003,56(2):12.
  • 9Balents L,Fisher M P A,Girvin S M.Fractionalization in an easy-axis Kagome antiferromagnet.Phys Rev (B),2002,65(22):224412~223319.
  • 10Mohan P,Nakajima F,Akabori M,et al.Fabrication of semiconductor Kagome lattice structure by selective area metalorganic vapor phase epitaxy.Applied Physics Letters,2003,83(4):689~691.

二级参考文献20

  • 1[1]Fan S,Winn J N,Devenyia,Chen J C,et al.Guided and defect modes in periodic dielectric waveguides.J Opt Soc Am(B),1995,12(7):1267~1272
  • 2[2]Kurizki G,Haus J W.Photonic band structure.J Modern Opt,1994,41(2):171~173
  • 3[3]Joannopoulos J D,Meade R D,Winn J N.Photonic Crystals,NJ:Princeton Univ.Press,1995.45~104
  • 4[4]Urso B D,Painter O,Brien J O,et al. Modal reflectivity in finite-depth tow-domensional photonic crystal microcatives.J Opt Soc Am (B),1998,15(3):1155~1159
  • 5[5]Dowling J P,Scalora M,Bloemer M J,et al.The photonic band edge laser:a new approach to gain enhancement.J Appl Phys,1994,75(4):1896~1899
  • 6[7]Chen Y B,Cai X B,Zhu Y Y,et al.Scond harmonic generation in tow dimensional mental photonic band gap materials.J Appl Phys,2002,92(6):2969~2973
  • 7[9]Baba T,Fukaya N,Yonekura J.Observation of light transmission in photonic crystal waveguides with bends.Electron Lett,1999,35(8):654~655
  • 8Duling I N, Burns W K, Goldberg L. High-power superfluorescent fiber source.Opt Lett,1990,15(1):33-35
  • 9Birks T A,Knight J C,Russell P St J,et al.Endlessly single mode photonic crystal fiber.Opt Lett,1996,22(13): 961-963
  • 10Knight J C,Arriaga J,Birks T A,et al. Anomalous dispersion in photonic crystal fiber.IEEE Photonics Technolgy Letters, 2000,12(7):807-809

共引文献35

同被引文献126

引证文献13

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部