期刊文献+

一种面向主题的基于多层次空间概念关系的关联规则挖掘算法 被引量:1

An Algorithm about Spatial Association Rule Mining Based on Thematic
下载PDF
导出
摘要 提出了一种面向主题的基于多层次空间概念的关联规则挖掘算法FT_MLSAM。在FT_MLSAM算法中,先根据用户感兴趣的主题确定挖掘的概念关系,然后对所涉及的多个空间数据层进行连接,生成空间视图,最后进行属性泛化,转化成一般属性关联规则的挖掘,实验证明算法是有效的。 In this paper, an algorithm of mining multi-level spatial association rules is presented which' s based on theme. We called the algorithm as FT_MLSAM in the paper. In FT_MLSAM, it first constructs the concept relation based on the thems on which the user is interested. Second, it joins the spatial layers which are used in the data mining. Last it turns spatial association mining into association mining by attribute generalizing. It is proved right from the experiment.
出处 《遥感学报》 EI CSCD 北大核心 2006年第3期289-293,共5页 NATIONAL REMOTE SENSING BULLETIN
基金 测绘遥感信息工程国家重点实验室开放基金资助项目(03-0101) 武汉大学博士启动基金资助
关键词 数据挖掘 空间关联规则 面向主题 多概念层次 data,mining spatial association rule based on thematic multi-layer spatial concept lattice
  • 相关文献

参考文献6

二级参考文献35

  • 1[1]R Agrawal et al. Mining association roles between sets of items in lager database[C].Proc ,ACM SIGMOD, 1993:207-216
  • 2[2]Jia Wei Han,Yongjian Fu.Mining Multiple-Level Association Rules in Large Databases[J].IEEE Tran. On Knowledge And Data Engineering,1999;11(5):798-805
  • 3[3]Li Shen,Hong Shen,Ling Cheng. New algorithms for efficient mining of association Rules[J].Information Sciences, 1999;118(1-4):251-268
  • 4Han Jiawei,Proceedings of the Intelnational Conference on Very Large Databases,1995年,420页
  • 5Han Jiawei,IEEE Trans Knowl Data Eng,1993年,5卷,1期,29页
  • 6Han J,Proc 21st Int Conf Very Large Data Bases,1995年,420页
  • 7Dao S,Proc Int Conf Knowledge Discovery in Databases and Data Mining(KDD 95),1995年,63页
  • 8Koperski K,Proceedings of the 4thInternational Symp.on L arge Spatial Databases(SSD’95 ),1995年,47页
  • 9Han J,Proceedings of the2 1st InternationalConference on Very L arge Data Bases,1995年,420页
  • 10Li Deyi,Research Development Computers,1995年,42卷,8期,32页

共引文献180

同被引文献8

  • 1王新洲,许承权.免疫算法及其在测量数据处理中的应用[J].武汉大学学报(信息科学版),2006,31(10):887-890. 被引量:3
  • 2马荣华,何增友.从空间数据库中挖掘频繁邻近类别集的一种新算法[J].武汉大学学报(信息科学版),2007,32(2):112-114. 被引量:8
  • 3刘小生,任海峰,陈棉.用空间分析方法进行空间关联规则提取[J].测绘通报,2007(5):19-21. 被引量:4
  • 4Koperski K, Han J. Discovery of Spatial Association Rules in Geographic Information Databases [M]//Egenhofer M J, Herring J R. Advances in Spatial Databases. Berlin: Springer-Verlag, 1995: 47-66.
  • 5Ester M, Kriegel H P, Sander J. Spatial Data Mining: a Database Approach[C]. The 5th International Symposium on Spatial Database, Berlin, 1997.
  • 6Koperski K, Han J. Discovery of Spatial Association Rules in Geographic Information Databases[J]. Lecture Notes In Computer Science, 1995,95: 47- 66.
  • 7Estivill Castro V, Lee I. Data Mining Techniques for Autonomous Exploration of Large Volumes of Geo-referenced Crime Data[C]. The 6th International Conference of Geo computation, Brisbane, Australiz, 2001.
  • 8王磊,潘进,焦李成.免疫算法[J].电子学报,2000,28(7):74-78. 被引量:351

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部