期刊文献+

关键方程的新推广 被引量:63

A New Generalization of Key Equation
下载PDF
导出
摘要 给出了关键方程的全新的推广,构造了一个齐次关键模方程,并用域F上的两个变元的多项式环F[x,y]的齐次理想刻画该方程的解空间;证明了齐次关键模方程可以用来解决卷积码的盲识别问题,这是一个全新的研究课题,在智能通信、信息截获和密码分析等领域有重要的应用;利用该方法得到的二元多项式齐次理想Grbner基的快速算法,给出了求解齐次关键模方程的快速算法,也给出了详细的计算实例.大量的实验也证实了该文的各项理论分析结果. This paper proposes a new generalization of the Key Equation. The authors construct a Homogenous Key Module Equation which is described by homogenous ideal of F[x,y], where F is a field. The authors show that the Homogenous Key Module Equation can be used to solve the problem of blind recognition of convolutional codes, which is a novel important research topic in adaptive communication, information interception and cryptanalysis. By means of a fast computation of Groebner basis of homogenous polynomial ideal with two variables, the authors find an efficient algorithm to solve the Homogenous Key Module Equation. A detailed computation example is given in this paper. Extensive experimentation confirms each result of theoretic analysis.
作者 邹艳 陆佩忠
出处 《计算机学报》 EI CSCD 北大核心 2006年第5期711-718,共8页 Chinese Journal of Computers
基金 国家自然科学基金重大项目基金(90204013) 上海市科技发展基金(035115019) 教育部全国优秀博士学位论文作者专项基金(200084)等资助
关键词 序列综合 关键方程 BERLEKAMP-MASSEY算法 Gr(o)bner基 卷积码盲识别 sequence synthesis key equation Berlekamp-Massey algorithm Gr6bner basis blind recognition of convolutional code
  • 相关文献

参考文献2

二级参考文献13

  • 1Alouini M-S, Goldsmith A J. Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combining techniques. IEEE Trans Veh Technol, 1999,48(4): 1165- 1181.
  • 2Goldsmith A J, Chua S G. Variable-rate variable-power MQAM for fading channels. IEEE Trans Comm,1997,45(10): 1218- 1230.
  • 3Lee J M, Song I, Jung S, et al. A rate adaptive convolutional coding method for multicarrier DS/CDMA systems. MILCOM 2000, Los Angeles, October, 2000, 932-936.
  • 4Barton M. Bellcore, Punctured convolutional codes for supporting PCS access to ATM networks. ICC'99,Vanconver, June 1999, 1880-1884.
  • 5Hagenauer J. Rate-compatible punctured convolutional codes (RCPC Codes) and their application. IEEE Trans Comm, 1988, 36(4): 389-400.
  • 6Cain J B, Clark G C, Geist J M. Punctured convolutional codes of rate (n -- 1)//n and simplified maximum likelihood decoding. IEEE Trans Inform Theory, 1979, 25(1): 97-100.
  • 7Begin G, Haccoun D. High-rate punctured convolutional codes: Structure properties and construction techniques. IEEE Trans Comm, 1989, 37(11): 1381-1385.
  • 8McEliece R J. The algebraic theory of convolutional codes, in Handbook of Coding Theory, Amsterdam.The Netherlands: Elescwier, 1999.
  • 9Shen B-Z, Patapoutian A, McEwen P A. Punctured recursive convolutional encoders and their applications in turbo codes. IEEE Trans Inform Theory, 2001, 47(6): 2300-2320.
  • 10Johannesson R, Zigangirov K S. Fundamentals of convolutional codes. Priscataway, NJ: IEEE Press,1999.1-100.

共引文献22

同被引文献298

引证文献63

二级引证文献260

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部