期刊文献+

酵母发酵液直接催化4-氯-乙酰乙酸乙酯不对称还原生成4-氯-3-羟基-丁酸乙酯 被引量:9

Asymmetric Reduction of Ethyl 4-Chloro-3-Oxobutanoate to Ethyl 4-Chloro3-Hydroxybutanoate Directly Catalyzed by Yeast Fermentation Broth
下载PDF
导出
摘要 考察了面包酵母发酵液直接催化4-氯-乙酰乙酸乙酯(COBE)的不对称还原反应,并进行了手性添加物的筛选和反应条件的优化实验. 结果表明,以β-环糊精为手性添加物时,酵母发酵液催化COBE不对称还原生成光活性产物(S)-4-氯-3-羟基-丁酸乙酯((S)-CHBE)的产率和ee值分别高达76%和92%. 在一定条件下,增大β-环糊精浓度,有利于(S)-CHBE的生成. 最佳酵母菌培养时间为16~18 h, 最佳反应温度和pH值分别为29~31 ℃和7.2. The asymmetric reduction of ethyl. 4-chloro-3-oxobutanoate (COBE) to optically active ethyl 4-chloro- 3-hydroxybutanoate (CHBE) directly catalyzed by yeast fermentation broth and the influence of chiral additives and reaction conditions on this reaction were studied. The concentrations of COBE and (S) CHBE, and the optical purity of the product were determined by gas chromatography and high-performance liquid chromatography with a Chiralcel OB column, respectively. In the yeast fermentation broth without any chiral additive, the substrate was decomposed and the pH value of the reaction mixture decreased sharply. When β-cyclodextrin was used as the chiral additive, the yield and enantiomeric excess of (S)-CHBE reached as high as 76 % and 92 %, respectively. Under specified conditions, high β-cyclodextrin concentration favored (S)-CHBE formation. The optimum reaction conditions are 29-31 ℃ , pH 7.2, and yeast cultivation time of 16-18 h.
出处 《催化学报》 SCIE CAS CSCD 北大核心 2006年第4期314-318,共5页
关键词 酵母 发酵液 4-氯-乙酰乙酸乙酯 不对称还原 4-氯-3-羟基-丁酸乙酯 Β-环糊精 yeast fermentation broth ethyl 4-chloro-3-oxobutanoate asymmetric reduction ethyl 4-chloro- 3-hydroxybutanoate β-cyclodextrin
  • 相关文献

参考文献13

二级参考文献43

  • 1黄锦霞,潘贻军.BaKer酵母用于合成手性氟化合物的研究进展[J].化学通报,1993(7):11-18. 被引量:1
  • 2陈庆华,邹昶.光学活性化合物的工业合成[J].有机化学,1994,14(1):1-11. 被引量:22
  • 3潘冰峰,顾建新,冯青,李祖义.白地霉G38生物转化制备抗忧郁药(R)-fluoxetine[J].微生物学报,1995,35(5):353-357. 被引量:3
  • 4刘志煜,李恒光,陈淑华.面包酵母对1,4,4α,8α-四氢-1,4-亚甲基萘-5,8-二酮的催化异构化[J].有机化学,1995,15(6):619-621. 被引量:3
  • 5Kasai N, Suzuki T, Furukawa Y. Chiral C3 expoxides and halohydrins: their preparation and synthetic application. Journal of Moleodar Catalysis B: Enzymatic, 1998, 4:237 ~ 252.
  • 6Chenevert R, Fortier G. Chemoenzymatic synthesis of both enantiomers of fluoxetine. Chemistry Letters, 1991,1603 ~ 1606.
  • 7Corey E J, Reichard G A. Enantioselective and practical syntheses of R-and S-Fluoxetines. Tetrahedron Letters, 1989, 30(39) :5207 ~ 5210.
  • 8Shimizu S, Hattori S, Hata H, et al. Stereoselective enzymatic oxidation and reduction system for the production of D(-)-pantoyl lactone from a racemic mixture of pantoyl lactone. Enzyme Microb Technol, 1987, 9(7) :411 ~ 416.
  • 9Yasohara Y, Kizaki N, Hasegawa J, et al. Synthesis of optically active ethyl 4-chloro-3-hydroxybutanoate by microbial reduction. Appl Microbiol Biotechnol, 1999, 51:847 ~ 851.
  • 10Shimizu S, Kataoka M, Katoh M, et al. Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by a microbial aldehyde reductase in an organic solvent-water diphasic system. Applied and Environment Microbiology, 1990, 56(8) :2374 ~ 2377.

共引文献49

同被引文献86

引证文献9

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部