期刊文献+

基于最大最小距离法的多中心聚类算法 被引量:72

Multiseed clustering algorithm based on max-min distance means
下载PDF
导出
摘要 针对k-means算法的缺陷,提出了一种新的多中心聚类算法。运用两阶段最大最小距离法搜索出最佳初始聚类中心,将原始数据集分割成小类后用合并算法形成最终类,即用多个聚类中心联合代表一个延伸状或者较大形状的簇。仿真实验表明:该算法能够智能地确定初始聚类种子个数,对不规则状数据集进行有效聚类,聚类性能显著优于k-means算法。 A novel multiseed clustering algorithm was proposed aiming at shortcomings of k-means algorithm. This algorithm could find optimal initial starting points applying iterative max-rain distance means and then combined the small clusters from given data set into final ones, for an elongated or large cluster could be considered as the union of a few small distinct hyperspherieal clusters. Experimcntal results demonstrate that the improved algorithm can automatically obtain the number of initial clusters, be effective on data set of irregular shapes and lead to better solutions than k-means algorithm.
出处 《计算机应用》 CSCD 北大核心 2006年第6期1425-1427,共3页 journal of Computer Applications
关键词 聚类 最大最小距离法 多中心 抽样 clustering max-min distance means multiseed sampling
  • 相关文献

参考文献6

  • 1HanJ KamberM.数据挖掘概念与技术[M].北京:机械工业出版社,2002..
  • 2KUMAR M, ORLIN JB, PATEL NR. Clustering data with measurement errors[ R]. Technical Report, RRR 12 - 2005, New Jersey:RUTCOR, Rutgers Center for Operations Researeh, 2005.
  • 3SU MC. A modified version for k-means[ J]. IEEE Transactions onPattern Analysis and Machine Intelligence, 2001, 23 (6) : 674 -680.
  • 4FAYYAD U, REINA C, BRADLEY PS. Initialization of interative refinement clustering algorithms[ A]. Proceedings of Fourth International Conference on Knowledge Discovery and Data Mining[ C].Menlo Park: AAAI Press, 1998. 194 - 198.
  • 5CHAUDHURI D, CHAUDHURI BB. A novel muhiseed nonhierarchical data clustering technique[ J]. IEEE Transactions on Systems,Man and Cybernetics: PartB, 1997, 27(5) : 871 - 877.
  • 6张春阳,周继恩,钱权,蔡庆生.抽样在数据挖掘中的应用研究[J].计算机科学,2004,31(2):126-128. 被引量:11

二级参考文献2

  • 1KishL著 倪加勋译.抽样调查[M].中国统计出版社,1997..
  • 2HanJiawei MichelineKamber.数据挖掘概念与技术[M].北京:机械工业出版社,2001.152-160.

共引文献14

同被引文献562

引证文献72

二级引证文献554

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部