期刊文献+

基于免疫原理的径向基函数网络在线学习算法及其在热工过程大范围工况建模中的应用 被引量:15

A Novel Online Training Algorithm Based on Immune Principles for RBF Neural Network and Its Application in the Thermal Process Wide Range Modeling
下载PDF
导出
摘要 针对现有径向基函数(RBF)神经网络训练算法在非线性动态系统大范围辨识中的不足,借鉴免疫原理,提出了一种新颖的RBF神经网络在线学习算法,通过分析RBF神经网络学习过程和免疫系统的相似性,采用免疫记忆、克隆选择、扩增和细胞凋亡机制在线动态调节网络隐层节点,并确定相应的数据中心和宽度,从而使网络具有在线学习和记忆新样本的功能,并将该网络应用于某300MW火电机组主汽压的多工况辨识.实验结果表明该算法不仅能精简网络的结构,而且能很好地适应对象的时变特性. A novel online training algorithm' for RBF neural network based on immune principles is presented to overcome the weaknesses of the traditional neural network training algorithm in the long time-period identification of non-linear dynamical system. With the analysis of the comparability between the learning of RBF neural network and immune system, this algorithm uses immune memory, clone selection and cell languish mechanisms to adjust the nodes in hidden layer dynamically, and determine their core function's center and width. As a result, the RBF neural network could have the function of on-line learning and memory of new samples. The improved neural network is then used for modeling the main steam pressure of 300MW thermal power unit with varying operating region, and the results show that the new algorithm can not only simplify the structure of neural network but also adapt the time-varying character of dynamical system effectively.
机构地区 东南大学动力系
出处 《中国电机工程学报》 EI CSCD 北大核心 2006年第9期14-19,共6页 Proceedings of the CSEE
基金 国家自然科学基金项目(50576011) 教育部高等学校博士学科点专项科研基金(20020286001)~~
关键词 热工过程 径向基函数神经网络 在线学习 免疫原理 系统辨识 thermal process radial basis function neuralnetwork on-line learning immunity principle systemidentification
  • 相关文献

参考文献14

二级参考文献41

  • 1杨勇平,王加璇.火电机组耗量特性的在线确定与机组间负荷最优分配[J].电站系统工程,1995,11(3):18-21. 被引量:18
  • 2张化光.热工过程的模糊辨识与控制[M].南京:东南大学,1991..
  • 3吴敏毓 刘恭植 (Wu Minyu Liu Gongzhi).医学免疫学 (Medical immunology)[M].合肥:中国科学技术大学出版社 (Hefei:University of Science &amp, Technology of ChinaPress),1995..
  • 4Poggio T, Girosi F. Networks for approximation and learning [J].Proc. IEEE. 1990, 78(9): 1481-1497.
  • 5Platt J. A resource-allocating network for function interpolation [J].Neural Computation, 1991, (3): 213-225.
  • 6Kadirkamanathan V. A function estimation approach to sequential learning with neural networks [J].Neural Computation, 1993, 5, 954-975.
  • 7Yingwei L, Sundararajan N, Saratchandran P. Performance evaluation of a sequential minimal radial basis function (RBF) neural networks learning algorithm [J]. IEEE Trans. Neural Networks, 1998,9(2): 308-318.
  • 8Li Y, Sundararajan N, Saratchandran P. Analysis of minimal radial basis function neural networks algorithm for real-time identification of nonlinear dynamic systems [J]. IEE Proc.-Control Theory Appl. 2000, 147(4): 476-484.
  • 9Junge, T, Unbehauen, H. On-line identification of nonlinear timevariant systems using structurally adaptive radial basis function networks [A]. Proc. Amer. Control Conf., Albuquerque[C]. New Mexico, 1997: 1037-1041.
  • 10[1]Dasgupta D, Attoh-Okine N. Immunity-based systems: a survey[C]. Proc. of 1997 IEEE International Conference on Systems, Man and Cybernetice, Florida, USA, 1997, :369-374

共引文献189

同被引文献147

引证文献15

二级引证文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部