摘要
在局部凸空间中考虑集值优化问题(VP)在强有效解意义下的Kuhn-Tucker最优性条件.在近似锥一次类凸假设下利用择—性定理得到了(VP)取得强有效解的必要条件,利用基泛函的性质给出了(VP)取得强有效解的充分条件,最后给出了一种与(VP)等价的无约束规划.
Kuhn-Tucker optimality conditions for the set-valued optimization problem (VP) with constraints are considered in the sense of strongly efficient solutions in locally convex spaces. Under the assumption of nearly cone-subconvexlikeness, by applying alternative theorem, a Kuhn-Tucker optimality necessary condition for (VP) is derived. By using the properties of base functionals, a sufficient condition is also obtained. Finally, a kind of unconstrained program equivalent to (VP) is established.
基金
国家自然科学基金(10461007)
关键词
强有效性
近似锥-次类凸性
集值优化
锥
strong efficiency
nearly cone-subconvexlikeness
set-valued optimization
cone.