期刊文献+

一种用细胞神经网络提取干涉条纹中心的新方法 被引量:4

CNN for Extracting the Center of Interference-stripes
下载PDF
导出
摘要 提取干涉条纹的中心是干涉测量的关键环节,文中提出了一种基于细胞神经网络(CNN)提取干涉条纹中心的新方法。CNN是一种实时处理信号的大规模非线性模拟电路,同时它的局部联接特点使其适用于超大规模集成电路的实现。CNN具有并行运算的能力,可消除传统串行算法复杂性高、不能实时处理的缺点。对该方法进行了分析,给出了实例的仿真结果,证明该方法能快速准确地提取干涉条纹的中心,提高了干涉条纹的判别精度,从而增加了实验中干涉条纹处理的直观性和实时性。 It is very important that extracting the center of interference - stripes in the interference measurement. A new method to extract the center of interference - stripes using cellular neural networks (CNN) is described. As a large - scale nonlinear analog circuit, the CNN is suitable for real- time signal and image processing. The CNN can be used for high- speed parallel computation and is easy to be translated into a VLSI implementation. A two - dimensional CNN that performs an algorithm to extracting the center of interference - stripes is proposed. Some practical results are presented and briefly discussed, which demonstrates the successful operation of the proposed algorithm.
出处 《计量学报》 EI CSCD 北大核心 2006年第2期117-120,共4页 Acta Metrologica Sinica
关键词 计量学 细胞神经网络 干涉条纹 图像处理 Metrology Cellular neural networks (CNN) Interference - stripes Image process
  • 相关文献

参考文献8

  • 1Chua L O,Yang L.Cellular Neural Networks:Theory[J].IEEE Trans on Circuits and Systems,1988,35:1257 ~1272.
  • 2Chua L O,Yang L.Cellular Neural Networks:Applications[J].IEEE Trans on Circuits and Systems,1988,35:1273~ 1290.
  • 3Blayvas I,Bruckstein A,Kimmel R.Efficient computation of adaptive threshold surfaces for image binarization[A].Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C],CVPR 2001,2001,Vol.1:737 ~ 742.
  • 4Liju Dong,Ge Yu.An optimization-based approach to image binarization[A].The Fourth International Conference on Computer and Information Technology[C],CIT ' 04,2004,165 ~170.
  • 5YuD,Ho C,Yu X,Mori S.On the application of cellular automata to image thinning with cellular neural network[A].Second International Workshop on Cellular Neural Networks and Their Applications[C],Proceedings CNNA-92,1992,210 ~ 215.
  • 6Matsumoto T,Chua L O,Yokohama T.Image thinning with a cellular neural network[J].IEEE Transactions on Circuits and Systems,1990,37(5):638 ~ 640.
  • 7Shimizu M,Fukuda M,Nakamura G.A thinning algorithm for digital figures of characters[A].Proceedings 4th IEEE Southwest Symposium on Image Analysis and Interpretation[C],2000,83 ~ 87.
  • 8Petrosin A,Salvi G.A two-subcycle thinning algorithm and its parallel implementation on SIMD machines[J].IEEE Transactions on Image Processing,2000,9(2):277 ~ 283.

同被引文献24

  • 1何儒云,王耀南.一种基于小波变换的InSAR干涉图滤波方法[J].测绘学报,2006,35(2):128-132. 被引量:13
  • 2花世群,骆英,洪云.基于等厚干涉原理的液体折射率测量方法[J].中国激光,2006,33(11):1542-1546. 被引量:14
  • 3ZEBKER H A, VILLASENOR J. Decorrelation in Inferometric Radar Echoes[J]. IEEE Trans Geoscience and Re mote Sensing, 1992, 30(5): 950- 959.
  • 4LEE J S, AINSWORTH T L, GRUNES M R, GOLD STEIN R M. Noise Filtering Interferometric SAR Images[C]//Proc SPIE European Symp Rome. Rome: [s. n. ], 1994,735- 742.
  • 5RODRIGUEZ E, MARTIN J M. Theory and Design of In terferometric Synthetic Aperture Radars[J]. IEE Proceedings F, 1992, 139 (2): 147- 159.
  • 6LEE J S, PAPATHANASSIOU K P,AINSWORTH T L, et al. A New Technique for Noise Filtering of SAR Inter fereometric Phase Images[J]. IEEE Trans Geosei Remote Ens, 1998, 36(5): 1456 -1465.
  • 7TROUVE E, NICOLAS J, MAITER H. Improving Phase Unwrapping Techniques by the Use of Local Frequency Es timates[J]. IEEE Trans Geosci Remote Sens, 1998, 36 (6) : 1963-1972.
  • 8WU N, FENG D Z, LI J X. A Locally Adaptive Filter of Interferometric Phase Images[J]. IEEE Geoscience and Remote Sensing Letters, 2006,3(1): 73- 77.
  • 9YU Q, YANG X, FU S, et al. An Adaptive Contoured Window Filter for Interferometric Synthetic Aperture Radar[J]. IEEE Geoscience and Remote Sensing Letters. 2007, 4(1): 23- 26.
  • 10CHUA L O, YANG L. Cellular Neural Networks: Applications[J]. IEEE Trans on Circuits and Systems, 1988, 35: 1273-1290.

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部