摘要
建立了旋转盘离心雾化熔滴飞行与凝固进程的一个数学模型,并用Runge-Kutta方法进行数值求解,模拟镍金属熔滴飞行与凝固的基本情况,探讨过程和材料参数的影响。结果表明:在旋转盘离心雾化中熔滴经历了一个大的过冷,其过冷度约为0.2Tm;在整个飞行期间,熔滴的冷却速率并不是常数,在熔点附近冷却速率约为5×104K/s;角速度越大,冷却速率越大,熔滴开始和完成凝固所需时间越短,雾化室可小些;熔滴过热温度对熔滴过冷度和冷却速率影响不明显,但完成凝固所飞行的距离增大,从雾化室设计角度,不宜采用大的过热温度。
A mathematical model of droplet dynamic and solidification progress during rotating disk centrifugal atomization was developed and numerically solved by Runge-Kutta's method. The flight and solidification of a nickel droplet was simulated. The effect of process and materials parameters was studied. The results show that the droplet experiences a large undercooling of about 0.2Tm and the cooling rate is not constant during the flight, about 5 × 10^4 K/s at the melting point. With increasing disk speed the cooling rate increases, and this leads an early start and completion of solidification. A small atomizing chamber can be used. The droplet superheat has a weak effect on nucleation temperature and cooling rate, but the flight distance at f= 1 increases. Therefore, a high droplet superheat is not suitable for the design of atomizing chamber.
出处
《中国有色金属学报》
EI
CAS
CSCD
北大核心
2006年第5期793-799,共7页
The Chinese Journal of Nonferrous Metals
关键词
离心雾化
旋转盘
飞行与凝固
数学模型
centrifugal atomization
rotating disk
flight and solidification
mathematical model