期刊文献+

广义强色散DGH方程的新型孤立波解 被引量:4

New solitary solutions for generalized DGH equation with strong dispersive term
下载PDF
导出
摘要 研究一类浅水波方程即广义强色散DGH方程,通过转化为双线性形式,得到了双Ham ilton结构和一些守恒量.通过7种拟设得到了该方程丰富的精确解:紧孤立波解(compacton),多重紧孤立波解,光滑孤立波解,尖峰孤立波解(peakon),移动尖峰孤立波解,周期解等,特别是得到了一类新型孤立波解即具有尖点或者奇异点的双孤立波解. One type of shallow water equations, namely, generalized DGH equation with strong dispersive term is introduced. By double linear formation, double Hamilton structure and some conservation laws are obtained. By using seven anaszs, abundant solutions including compacton, smooth solitary solution, peakon, diaplacement peakon and periodic solution are obtained. Particularly the double solitary wave solution with peakon double singular solitary wave solution is obtained.
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2006年第3期279-282,共4页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(10071033)
关键词 偏微分方程 广义强色散DGH方程 双HAMILTON结构 紧孤立波解 尖峰孤立波解 双孤立波解 partial differential equation generalized DGH equation with strong dispersive term double Hamilton structure compacton peakon double solitary solution
  • 相关文献

参考文献7

  • 1Camaasa R,Holm D.An integrable shallow equation with peaked solitons[J].Phy Rev Lett,1993,13:1661-1665.
  • 2Fred Cooper,Harvey Shepard.Soliton in the Camassa -Holm shallow water equation[J].Physics Letters A,1994,194:246-250.
  • 3Tian Lixin,Song Xiuying.New peaked solitary wave solutions of the generalized Camassa-Holm equation[J].Chaos,Solitons and Fractals,2004,19 (3):621-639.
  • 4Dullin H R,Gottwald G A,Holm D D.An integrable shallow water equation with linear and nonlinear dispersion[J].Phy Rev Lett,2001,87(19):194 -201.
  • 5Tian Lixin,Gui Guilong,Liu Yue.On the well-posedness problem and the scattering problem for DGH equation[J].Comm Math Phy,2005,257 (3):667-701.
  • 6田立新,殷久利.非线性Schrdinger方程的Compacton解和孤立波解[J].江苏大学学报(自然科学版),2004,25(1):44-47. 被引量:15
  • 7宋秀迎,田立新.广义Camassa-Holm方程的尖峰孤立子及其耗散下的行波解[J].江苏大学学报(自然科学版),2003,24(1):35-39. 被引量:15

二级参考文献3

共引文献23

同被引文献37

  • 1WANG Yushun, WANG Bin & QIN MengzhaoLASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China,School of Mathematics and Computer Science, Nanjing Normal University, Nanjing 210097, China,School of Mathematics and System Science, Chinese Academy of Sciences, Beijing 100080, China.Concatenating construction of the multisymplectic schemes for 2+1-dimensional sine-Gordon equation[J].Science China Mathematics,2004,47(1):18-30. 被引量:17
  • 2张金良,王明亮,王跃明.推广的F-展开法及变系数KdV和mKdV的精确解[J].数学物理学报(A辑),2006,26(3):353-360. 被引量:25
  • 3虞吉林.考虑微结构的固体力学的进展和若干应用[J].力学进展,1985,15(1):82-89.
  • 4卢殿臣,洪宝剑,田立新,张大珩.(n+1)维Sinh-Gordon方程新的椭圆函数周期解[J].江苏大学学报(自然科学版),2007,28(6):544-548. 被引量:7
  • 5郭鹏,张磊,吕克璞,段文山.一类非线性弹性杆波动方程的求解[J].应用数学和力学,2008,29(1):57-61. 被引量:5
  • 6Chakravarty S,Prinari B, Ablowitz M J. Inverse Scattering Transform for 3-Level Coupled Maxwell-BlochEquations with Inhomogeneous Broadening [J]. Physica D: Nonlinear Phenomena, 2014, 278/279 : 58-78.
  • 7Wazwaz A M. Solitary Wave Solutions of the Generalized Shallow Water Wave (GSWW) Equation by Hirota’sMethod, tanh-coth Method and Exp-Function Method [J]. Appl Math Comput, 2008,202(1) : 275-286.
  • 8Abd-el-Makk M B, Amin A M. Lie Group Method for Solving Generalized Hirota-Satsuma Coupled Korteweg-deVries (KdV) Equation [J]. Appl Math Comput, 2013 , 224 : 501-516.
  • 9YANG Shaojie,HUA Cuncai. Lie Symmetry Reductions and Exact Solutions of a Coupled KdV-Burgers Equation[J]. Appl Math Comput, 2014,234: 579-583.
  • 10LI Wenwu, TIAN Ye, ZHANG Zhe. F-Expansion Method and Its Application for Finding New Exact Solutions tothe sine-Gordon and sinh-Gordon Equations [J]. Appl Math Comput, 2012,219(3) : 1135-1143.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部