期刊文献+

带乘性噪声系统的多尺度最优滤波融合算法 被引量:2

Multiscale Optimal Filtering Fusion Algorithm for Systems with Multiplicative Noise
下载PDF
导出
摘要 利用小波变换和多尺度分析的思想,将基于模型的动态系统分析和基于统计特性的多尺度信号变换方法相结合,提出了在线性最小方差意义下的带乘性噪声系统的多尺度最优滤波融合算法。并用计算机仿真说明了融合算法的有效性。 On the basis of wavelet transformation and multiscale analysis, the paper combines the model-based dynamic system analysis method with the muhiscale information transformation method based on the statistical characteristics and proposes muhiscale optimal filtering fusion algorithm for systems with multiplicative noise. The algorithm is optimal in the sense of linear minimum-variance. Computer simulations show the efficiency of the fusion algorithm.
出处 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第3期493-496,364,共5页 Periodical of Ocean University of China
基金 国家自然科学基金数学天元基金(A0324676) 教育部科学技术研究重点项目(02131)资助
关键词 多尺度分析 小波变换 带乘性噪声系统 数据融合 最优滤波算法 muhiscale analysis wavelet transformation systems with muhiplicative noise data fusion optimal filtering algorithm
  • 相关文献

参考文献6

  • 1Chu Dongsheng,Liu Bin,Liang Meng.Optimal fix-interval smoothing and deconvolution algorithms for multi-channel systems with multiplicative noises[C].Xiamen,China:Proceedings of the 2002 International Conference on Control and Automation,2002:1940-1943.
  • 2Chu Dongsheng,Wang Lu,Shi Zheng.A decentralized fixed-Interval deconvolution algorithm for multi-sensor systems with multiplicative noises[C].Hangzhou,China:The 6th World Congress on Intelligent Control and Automation,2004:1571-1574.
  • 3Lang Hong.Multiresolutinal filtering using wavelet transform[J].Aerospace and Electronic Systems,IEEE Transactions,1993,29(4):1244-1251.
  • 4文成林,张书玲,施晨鸣,张洪才.基于小波变换的多传感器多分辨分布式滤波[J].西北大学学报(自然科学版),1999,29(1):22-26. 被引量:10
  • 5禇东升,张玲,梁猛,林恒.通道特性相关时带乘性噪声系统的最优滤波[J].青岛海洋大学学报(自然科学版),2002,32(6):987-992. 被引量:10
  • 6Lang Hong.Adaptive distributed filtering in multi-coordinated systems[J].IEEE Transactions,1991,27(4):715-724.

二级参考文献5

共引文献18

同被引文献20

  • 1綦声波,张玲,王璐.复杂多通道带乘性噪声系统的最优固定域平滑算法[J].中国海洋大学学报(自然科学版),2004,34(4):636-640. 被引量:2
  • 2Anderson B,Moore J B.Optimal filtering[M].NJ:PretenceHall,1979.
  • 3Wang Fan,Balakrishnan V.Robust Kalman filters for linear timevarying systems with stochastic parametric uncertainties[J].IEEE Trans on Signal Processing,2002,50(4):803-813.
  • 4Lewis F L,Xie L,Popa D.Optimal and robust estimation:with an introduction to stochastic control theory[M].NY:CRC Press,2008.
  • 5Wang Zidong,Dniel W C Ho,Liu Xiaobui.Variance-constrained filtering for uncertain stochastic systems with missing measurements[J].IEEE Trans on Automatic Control,2003,48(7):1254-1258.
  • 6Wang F,Balakrishnan V.Robust estimators for systems with deterministic and stochastic uncertainties[C].Proceedings of 38th conference on decision and control,phoenix,1999,12:1946-1951.
  • 7Prirmbs J A.Stochastic receding horizon control of constrained linear systems with state and control multiplicative noise[C].New York:2007 American Control Conference,2007:4470-4475.
  • 8Yang Fuwen,Wang Zidong,Hung Y S.Robust Kalman filter for discrete time-varying uncertain systems with multiplicative noise[J].IEEE Trans on Automatic Control,2002,47(7):1179-1183.
  • 9Li Weiwei,Todorov E,Skelton R E.Estimation and control of systems with multiplicative noise via linear matrix inequalities[C].Portland:2005 American control conference,2005,6:1181-1816.
  • 10Li Weiwei,Skelton R E,Todorov E.State estimation with finite signal-to-noise models via linear matrix inequalities[J].Journal of Dynamic Systems,Measuremeat and Control,2007,129(3):136-143.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部