期刊文献+

面向制造网络的节点发现技术研究 被引量:4

Research on node discovery of manufacturing networks
下载PDF
导出
摘要 为了提高制造资源和服务的发现准确性,提出了一种基于互联网的制造网络节点发现方法.制造主题节点内容和结构存在相似的特点,从网络节点的文本中抽取反映节点主题的结构和内容特征词,采用不同的加权方法表示为内容和结构特征信息,建立描述节点主题的混合向量空间模型.在此模型的基础上,通过类中心距离法来分析和识别节点的主题,并利用网络搜索、信息处理等技术构建了制造节点发现的实验原型系统.实验结果表明,混合向量空间模型适合描述制造主题的节点,原型系统对制造节点的发现准确性较高. The approach of Manufacturing node discovery was developed to improve the accuracy of manufacturing resource searching from the Web. The structures and contents of a node reflect its topic synthetically. A hybrid vector space model (HVSM) to denote nodal topic was proposed accordingly. This model identified the topics of different nodes through similarity measure. Its feature vector elements were composed of the feature information about the node structure and content, and extracted from relevant web pages. The prototype system based on HVSM model was built by web search and information processing techniques. Experimental results showed that this system has good performance in domain-specific node recognition. Furthermore, HVSM model is suitable for node topic description and easy to implement in actual applications.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2006年第5期738-742,909,共6页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(60374057 50575204) 国家"863"高科技研究发展计划资助项目(2005AA411910)
关键词 制造网络 向量空间模型 相似性 分类 manufacturing networks vector space model, similarity classification
  • 相关文献

参考文献9

  • 1SALTON G. Developments in automatic text retrieval[J]. Science, 1991, 253(5023):974 - 979.
  • 2HERSOVICI M, JACOVI M, MAAREK Y, et al. The shark-search algorithm-an application: tailored web site mapping [J]. Computer Networks, 1998, 30 (17) :317 - 326.
  • 3CHAKRABARTI S, VANDENBERG M, DOM B. Focused crawling: a new approach to topic-specific web resource discovery [J]. Computer Networks, 1999, 31 (11-16) : 1623-1640.
  • 4EHRIG M, MAEDCHE A. Ontology-focused crawling of web documents [C]// Proc 2003 ACM symposium on Applied Computing. New York: ACM, 2003:1174 -1178.
  • 5SIZOV S, JENS G, MARTIN T. From focused crawling to expert information: an application framework for web exploration and portal generation [C]// Proc 29th Int'l Conf Very Large Data Bases (VLDB 2003). Nashville : Morgan Kaufmann, 2003 : 1105 - 1108.
  • 6RICHARD O D, PETER E H, DAVID G S. Pattern classification [M]. 2nd ed. New York: John Wiley & Sons Inc,2001:507 - 508.
  • 7HAN E H, KARYPIS G. Centroid-based document classification: analysis and experimental results [C]//Proc of PKDD'00. London: Springer-Verlag, 2000 :424 - 431.
  • 8黄萱菁,夏迎炬,吴立德.基于向量空间模型的文本过滤系统[J].软件学报,2003,14(3):435-442. 被引量:92
  • 9VOORHEES E M, HARMAN D K. Overview of the 9th text retrieval conference (TREC-9) [C] // Proc 9th Text Retrieval Conf. Gaithersburg:N/ST Special Publication, 2000:1-14.

二级参考文献1

共引文献91

同被引文献46

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部