期刊文献+

基于CHMM的旋转机械故障诊断技术 被引量:12

FAULT DIAGNOSIS TECHNIQUE OF ROTATING MACHINE BASED ON CHMM
下载PDF
导出
摘要 隐马尔可夫模型(Hidden Markov model,HMM)是一种具有较强的时间序列建模能力的信号模式处理工具, 在语音处理中获得了广泛应用,特别适合于非线性、重复再现性不佳的信号的分析。基于振动信号与语音信号的相似性,将CHMM(Continuous Hidden Markov model)引入了旋转机械的故障诊断中。采用12阶LPC倒谱系数进行特征提取,建立CHMM,为防止数据下溢,引入前向一后向比例因子算法求其对数似然概率,并且采用K-means 算法对CHMM进行参数初始化。在给定的观测序列中每一种模型的优化路径通过Viterbi算法实现,用Baum-Welch 算法实现参数重估,并给出了重估公式。最后,在转子试验台上模拟了四种故障试验,建立了四种故障的CHMM 模型,通过求其最大似然概率值来决定机器的运行状态,试验结果证明了该方法的有效性。 Hidden Markov model(HMM) as a tool for disposing signal pattern which has great ability of building time sequence, has widely been used in speech recognition. It is especially fit for signal which is nonlinear, non-stationary, bad in repeating to analysis. Based on the comparability between vibration signal and sound signal, CHMM is introduced to fault diagnosis for rotating machine. CHMM is built by using 12 rank LPC cepstrum coefficient to extract feature vectors, scaled forwards-backwards algorithm is introduced to calculate log-likelihood avoiding the data to underflow and K-means algorithm is also used to initialize the parameter. In the given observation sequence, optimizing every model with Viterbi algorithm, with baum-welch algorithm to re-estimate parameter, and the re-estimation formula is also provided. Last, four kinds of fault experiment have been simulated on the rotor test-bed, and four kinds of fault CHMM model are built. Machine's operating state is determined by calculating the maximal log-likelihood, and the results of experiment proves that this kind of method is effective.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2006年第5期126-130,共5页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(50275024)。
关键词 CHMM 故障诊断 旋转机械 模式识别 CHMM Faults diagnosis Rotating machine Pattern recognition
  • 相关文献

参考文献5

二级参考文献18

  • 1国立新,莫福源,李昌立.基于连续高斯混合密度HMM的汉语全音节语音识别研究[J].声学学报,1995,20(5):321-329. 被引量:11
  • 2科恩L.时-频分析:理论与应用[M].西安:西安交通大学出版社,1998..
  • 3童进.隐Markov模型在旋转机械升降速过程故障诊断中的应用研究:博士学位论文[M].杭州:浙江大学,1999..
  • 4刘国亭,赵瑞云.隐马尔柯夫模型在信号检测中的应用[J].上海交通大学学报,1997,31(4):114-117. 被引量:2
  • 5Boashash B. Interpreting and estimating the instantaneous frequency of a signal--Part 1: fundamentals. Proc IEEE,1992, 80(4): 520-538.
  • 6Boashash B. Interpreting and estimating the instantaneous frequency of a signal--Part 2.algorithms and applications.Proc IEEE, 1992, 80(4): 540--568.
  • 7Yuk D S, Che C W, Zin Limin, et al. Environment-independent continuous speech recognition using neural networks and hidden markov models. Proc IEEE, 1996,6(5): 3 358-3 361.
  • 8Rabiner L IL Juang b. An introduction to hidden markov models. IEEE ASSP Mag., 1986, 3(1): 4-16.
  • 9White L B. Cartesian hidden Markov models with applications. IEEE Trans. on Signal Processing, 1992, 40(6):1601-16044.
  • 10Streit R, Barret R. Frequency tracking using hidden Markov models. IEEE Trans of Acoustics, Speech and Signal Processing, 1990, 38(4): 586-598.

共引文献22

同被引文献173

引证文献12

二级引证文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部