期刊文献+

基于主成分分析和神经网络的近红外光谱苹果品种鉴别方法研究 被引量:148

Discrimination of Varieties of Apple Using Near Infrared Spectra Based on Principal Component Analysis and Artificial Neural Network Model
下载PDF
导出
摘要 提出了一种用近红外光谱技术快速鉴别苹果品种的新方法,首先用主成分分析法对苹果品种进行聚类分析并获取苹果的近红外指纹图谱,再结合人工神经网络技术进行品种鉴别。主成分分析表明,主成分1和主成分2的累积可信度已达98%,以主成分1和2对所有建模样本的得分值做出的得分图,对不同种类苹果具有很好的聚类作用。利用主成分分析得到的载荷图可以得到对于苹果品种敏感的特征波段,用特征波段图谱作为神经网络的输入建立三层BP人工神经网络模型。每个品种各25个苹果共75个用来建立神经网络模型,余下的共15个用于预测。对未知的15个样本进行预测,品种识别准确率达到100%。说明文章提出的方法具有很好的分类和鉴别作用,为苹果的品种鉴别提供了一种新方法。 A new method for the discrimination of varieties of apple by means of near infrared spectroscopy(NIRS) was developed. First, principal component analysis (PCA) was used to compress thousands of spectral data into several variables and describe the body of spectra, the analysis suggested that the cumulate reliabilities of PC1 and PC2 (the first two principle components) were more than 98%, and the 2-dimentional plot was drawn with the scores of PC1 and PC2. It appeared to provide the best clustering of the varieties of apple. The loading plot was drawn with PC1 and PC2 through the whole wavelength region. The fingerprint spectra, which were sensitive to the variety of apple, were obtained from the loading plot. The fingerprint spectra were applied as ANN-BP inputs. Seventy five samples from three varieties were selected randomly, then they were used to build discrimination model. This model was used to predict the varieties of 15 unknown samples; the distinguishing rate of 100% was achieved. This model is reliable and practicable. So the present paper could offer a new approach to the fast discrimination of varieties of apple.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2006年第5期850-853,共4页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(30270773) 高等学校优秀青年教师教学科研奖励计划(02411) 浙江省自然科学基金人才基金项目(RC02067)资助
关键词 近红外光谱 苹果 主成分分析 人工神经网络 聚类 Near infrared spectral Apple Principal component analysis (PCA) Artificial neural network Clustering
  • 相关文献

参考文献10

二级参考文献27

  • 1张洁,高士贤,韩凤先,何淑华,姜大成.中药材红外光谱鉴别法理论依据[J].长春中医学院学报,1989,5(3):2-3. 被引量:1
  • 2田进国,许欣荣.红外光谱法鉴别中药材的初步探讨[J].中草药,1989,20(5):29-32. 被引量:28
  • 3邱泽雨,郭允珍.中药红外光谱鉴别方法的研究[J].中成药,1989,11(8):16-17. 被引量:13
  • 4.神经网络及其在化学中的应用[M].合肥:中国科技大学出版社,200085..
  • 5Couto S M, Silva M A, Regazzi A J. An electrical conductivity method suitable for quantitative mechanical damage evaluation[J]. Transactions of the ASAE, 1998,41(2) .421-426.
  • 6Ikediala J N, Tang J, Drake S R, et al. Dielectric properties of apple cultivars and codling moth larvae[J].Transactions of the ASAE, 2000,43 (5) : 1175 -1184.
  • 7Nelson S O, Stetson L E. Germination response of sweet clover seed to 39 MHz electrical treatments [J].Transactions of the ASAE, 1982,25(5) : 1412-1416.
  • 8Panobianco M, Vieira R D, Krzyzanowski F C, et al.Electrical conductivity of soybean seed and correlation with seed coat lignin content [J]. Transactions of the ASAE, 1999,42(1):945-948.
  • 9Nelson S O. Dielectric properties of some fresh fruits and vegetables at frequencies of 2. 45 to 22 GHz [J].Transactions of the ASAE, 1983,26(2) :613-616.
  • 10Nelson S O. Microwave dielectric properties of fresh onions[J]. Transactions of the ASAE, 1992,35(3):963-968.

共引文献63

同被引文献1775

引证文献148

二级引证文献1646

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部