期刊文献+

Bcklund变换和微分差分方程 被引量:1

Bcklund Transformation and Differential-difference Equation
下载PDF
导出
摘要 主要研究构造非线性演化方程的Backlund变换的新途径.首先从一个连续的谱问题出发,借助于Lax对的非线性化方法,推导出连续的非线性演化方程,然后应用谱问题的相容性,构造了两个非线性微分差分方程,这两个方程恰好是一个连续的非线性演化方程的Backlund变换. In this paper, we mainly construct two Backlund transformations of the nonlinear evolution equation. Through nonlinearization technique,we get continuous nonlinear evolution equation from the continuous eigenvalue problem,and then we have constructed two differential difference equations with the help of the compatibility, these equations can be as Backlund transformations of the nonlinear evolution equation.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第2期150-152,共3页 Journal of Henan Normal University(Natural Science Edition)
基金 河南省自然科学基金资助项目(0311011500)
关键词 BACKLUND变换 相容性 微分差分方程 Backlund transformation ldifferential-difference equation compatiblity
  • 相关文献

参考文献6

  • 1Rogers C,Shadwick W R.Backlund Transformations and their applications[M].New York:Academic Press,1982:237-298.
  • 2Degasperis A,Rogers C,Schief W K.Isothermic Surfaces Generated via Backlund and Montard Transformations[J].Stud Apply math,2002,5:105-124.
  • 3Coute R,Musette M.Painleve Analysis and Backlund transformation in the Kuromoto-Sivashinsky equation[J].J Phys A:Math and Gen,1989(22):169-177.
  • 4Hirota R,Ramani A.Nonlinear mode decouping for classes of evolutions[J].Phy Lett A,1980(76):95-96.
  • 5Hirota R,Satsuma J.Soliton solutions of a coupled Korteweg-de Vries equation[J].Phys Lett A,1981(85):407-408.
  • 6leve D.Nonlinear differential-difference equations as Backlund transformations[J].J Phys A:Math Gen,1981(14):1 082-1 098.

同被引文献7

  • 1王军民,赵安勇.可作为Bcklund变换的微分差分方程[J].信阳师范学院学报(自然科学版),2006,19(2):139-140. 被引量:2
  • 2Ablowitz M J P , Clarkson P A . Soliton Nonlinear Evolution equations and Inverse Scattering[M]. New York: Cambridge University Press, 1991 : 200- 267.
  • 3Wazwaz Abdul-Majid. The tanh method:solitons and periodic solutions for the Dodd-Bullough-mikhailov and the Tzitzeica-Dodd-Bullough equations[J]. Chaos, Solitons and Fractals, 2005,25 : 55 - 63.
  • 4Wang M L,Zhou Y B, Li Z B. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics[J]. J Phys Lett A,1996,216:67-75.
  • 5Wang Junmin, Geng Xianguo. Explicit solutions of some(2 + 1)-dimensional differential- difference equations[J].J Phys Lett A, 2003, 319:73-78.
  • 6Calogero F, Degasperis A. 1976 Backlund transformations, nonlinear superposition principle, multisoliton solutions and conserved quantities for the "boomeron" nonlinear evolution equation[J].Lett Nuovo Cimento, 1976,16:434-438.
  • 7Wu W T. Polynomial Equation-Solving and Its Application,Algorithms and Computatio[M]. Berlin: Springer, 1994:1-35.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部