期刊文献+

基于动态时间归整技术的电站过程故障诊断方法 被引量:3

Fault Diagnosis of Processes in Power Plants Based on Dynamic Time Warping
下载PDF
导出
摘要 对于像电站这样的复杂工业过程,基于数学模型的故障诊断方法难以应用。为此,提出了一种基于动态时间归整(DTW)技术的故障诊断方法。该方法不依赖过程数学模型,而是基于过程数据分析来进行故障诊断,因而适合在电站生产过程中应用。首先,通过历史数据分析和过程知识,建立故障模式库。然后在故障诊断过程中利用DTW技术将检测样本与故障模式库进行模式匹配。最后根据相似性尺度找出故障模式库中与之最匹配的故障样本,从而得出诊断结果。以电站主汽温控制过程为例对该方法进行了仿真研究。实验结果表明,该方法具有较高的诊断精度,并对电站生产过程的时变特性具有良好的鲁棒性。 Considering the difficulties of applying mathematical models for fault diagnosis of so complicated process, as existing in power plants, a diagnosing method, based on the dynamic time warping (DTW) technique, is being proposed, which doesn't depend on mathematical models but is based on data analysis of relevant processes, and therefore is suitable for power plants. First of all, a fault pattern bank is formed through historical data analysis and process knowledge. Then later on in the course of fault diagnosing, detected samples are subjected to pattern matching with the fault pattern bank by making use of the DTN technique. Finally, a best matching fault sample, stored in the bank, is found according to its measure of comparability and with it the result of diagnosis. Taking fresh steam temperature control process as an example, a simulation test of the mentioned method has been performed, which shows that, considering the versatility of behavior of operational processes in power plants, the said method is featured by relatively high diagnosing precision and robustness. Figs 2, tables 3 and refs 8.
出处 《动力工程》 EI CSCD 北大核心 2006年第3期396-399,共4页 Power Engineering
基金 国家自然科学基金资助项目(50576022)
关键词 自动控制技术 故障诊断 动态时间归整 电站过程 相似性尺度 鲁棒性 automatic control technique fault diagnosis dynamic time warping power plant process comparability measure robustness
  • 相关文献

参考文献8

二级参考文献27

  • 1黄孝彬,刘吉臻,牛玉广.主元分析方法在火电厂锅炉过程故障检测中的应用[J].动力工程,2004,24(4):542-547. 被引量:28
  • 2[1]Duyar A, Eldem V, Merrill W, et al. Fault detection and diagnosis in propulsion systems: a fault parameter estimation approach [J].AIAA Journal of Guidance, Control and Dynamics, 1994, 17( 1 ):104 ~ 108
  • 3[5]Kassidas A,Taylor P A,MacGregor J F. Off-line diagnosis of deterministic faults in continuous dynamic multivariable processes using speech recognition methods[J]. Journal of Process Control, 1998,8(5/6) :381 ~ 393
  • 4[6]Keogh E J,Paazani M J. Scaling up dynamic time warping for data mining applications [A]. In: Proceedings of the 6th International Conference on Knowledge Discovery and Data Mining[C]. Boston,2000. 285 ~ 289
  • 5Qin SJ, Li W, Yue HH. Recursive PCA for adaptive process monitoring [C]. Proc of IFAC World Congress, Bejing, P R China, 1999: 85-90.
  • 6Patton R J, Chen J. Observer-based fault detection and isolation: robustness and applications[J]. Contr Eng Practice. 1997, 5 (5) : 671 - 682.
  • 7Frank P M. Analytical and qualitative model-based faul03.28.t diagnosis a survey and some new results European Journal of Control, 1996,2 (1) : 6.
  • 8Raich AC, Cinar A, Statistical process monitoring and disturbance diagnosis in multivariate continuous processes [J]. AIChE J , 1996(42):995-1009.
  • 9Dunia R, Qin SJ. Joint diagnosis of process and sensor faults using principle component analysis [J].Control Engineering Practice ,1998(6):457-469.
  • 10Jackson JE, A user's guide to principle compoents[M]. Wiley, New York:1991.

共引文献62

同被引文献29

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部