期刊文献+

一种改进的蚁群算法及其在TSP中的应用 被引量:11

An Improved Ant Colony Algorithm and Application in the TSP
原文传递
导出
摘要 为了提高传统蚁群优化算法求解的质量,对传统的蚁群优化算法进行了改进,引进了一种信息素适时交换方法,同时在信息素积累的过程中,自适应地改变信息素的挥发率,将算法中的正反馈作用抑制到适当的程度,扩大了可行解的范围,避免了算法过早的停滞,提高了解的质量,同时算法的收敛速度没有明显的降低.通过三种TSP问题的仿真实验,证明该算法具有较强的发现较好解的能力,解的稳定性也比较好. In order to improve the earlier stagnation in the conventional ant colony optimization, which easily leads to local optimal solution, an improved algorithm was proposed. In the algorithm, a new mechanism of trail information exchange between edges was introduced; on the other hand, the trail information volatilization was modified adaptively with the algorithm operating. By those, the function of positive feedback in ACO was suppressed to a reasonably degree so that the algorithm will not stopped earlier, the area of feasible solutions was expanded, and hence, a better solution can likely be got, at the same time the convergence speed was not reduced distinctly. Experimental results on three TSPs show that the algorithm has more powerful capacity of finding global solution and stability than that of conventional ant colony optimization.
作者 屈稳太 丁伟
出处 《系统工程理论与实践》 EI CSCD 北大核心 2006年第5期93-98,共6页 Systems Engineering-Theory & Practice
关键词 蚁群算法 正反馈 优化 旅行商问题 ant colony algorithm positive feedback optimization traveling salesman problem
  • 相关文献

参考文献14

  • 1Dorigo M,Stutzle T.Ant Colony Optimization[M].MIT Press,Cambridge,MA,2004.
  • 2Dorigo M,Blum C.Ant colony optimization theory:A survey[J].Theoretical Computer Science,2005,344:243-278.
  • 3Dorigo M,Gambardella L M.Ant colony system:A cooperative learning approach to the traveling salesman problem[J].IEEE Trans Evolutionary Computation,1997,1 (1):53-66.
  • 4Talbi E G,Roux O,Fonlupt C,et al.Parallel ant colonies for the quadratic assignment problem[J].Future Generation Computer Systems(FGCS).2001,17(4):441-449.
  • 5Bullnheimer B,Hartl R F,Strauss C.An improved ant system algorithm for the vehicle routing problem[R].Ann Oper Res,1999,89:319-28.
  • 6Bell J E,McMullen P R.Ant colony optimization techniques for the vehicle routing problem[J].Advanced Engineering Informatics,2004,18(1):41-48.
  • 7McMullen P R.An ant colony optimization approach to addressing a JIT sequencing problem with multiple objectives[J].Artificial Intelligence in Engineering,2001,15(3):309-317.
  • 8Ahn S H,Lee S G,Chung T C.Modified ant colony system for coloring graphs[A].Proceedings of the 2003 Joint Conference of the Fourth International Conference on Information Communications and Signal Processing and the Fourth Pacific Rim Conference on Multimedia[C],2003,3(15-18):1849-1853.
  • 9Shelokar P S,Jayaraman V K,Kulkarni B D.An ant colony classifier system:Application to some process engineering problems[J].Computers and Chemical Engineering,2004,28(9):1577-1584.
  • 10汪镭,吴启迪.蚁群算法在系统辨识中的应用[J].自动化学报,2003,29(1):102-109. 被引量:40

二级参考文献11

  • 1Dorigo M, Gambardella L M. Ant colony system: a cooperative learning approach to the travelling salesman problem. IEEE Transactions on Evolutionary Computation, 1997, 1(1):53~66
  • 2Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agents. IEEE Transactions on SMC, Part B, 1996, 26(1):29~41
  • 3Gambardella L M, Taillard E D, Dorigo M. Ant colonies for the quadratic assignment problem. Journal of the Operational Research Society, 1999, 50(2):167~176
  • 4Leguizamon G, Michalewicz Z. A new version of ant system for subset problems. In: Proceedings of the 1999 Congress on Evolutionary Computation, 1999,2:1459~1464
  • 5Maniezzo V, Dorigo M, Colorni A. Algodesk: an experimental comparison of eight evolutionary heuristics applied to the quadratic assignment problem. European Journal of Operational Research, 1995,81(1):188~204
  • 6Maniezzo V. Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem. Informs Journal on Computing, 1999, 11(4): 358~369
  • 7Maniezzo V, Colorni A. Ant system applied to the quadratic assignment problem. IEEE Transactions on Knowledge and Data Engineering, 1999, 11(5):769~778
  • 8吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法[J].计算机研究与发展,1999,36(10):1240-1245. 被引量:306
  • 9张纪会,高齐圣,徐心和.自适应蚁群算法[J].控制理论与应用,2000,17(1):1-3. 被引量:150
  • 10吴斌,史忠植.一种基于蚁群算法的TSP问题分段求解算法[J].计算机学报,2001,24(12):1328-1333. 被引量:247

共引文献149

同被引文献101

引证文献11

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部