期刊文献+

用于图像分割的滤波EM算法 被引量:7

Filtering EM Algorithm for Image Segmentation
下载PDF
导出
摘要 利用邻近像素类别上的相关性,在采用EM算法对模型参数求解的过程中,以滤波方法引入像素的空间位置信息,降低了EM对初始值选择的敏感性.该算法在引入了像素的位置信息的同时,保持了EM算法的简单性,并为混合分量个数的选择提供了一种新的实现途径.对实际图像的分割结果证实了算法的有效性. Unsupervised learning of finite mixture models involves two open problems. The selection of the number of components and the initialization. To circumvent these problems in application to image segmentation, the paper integrates the filter technique into the EM algorithm. Unlike the standard EM algorithm, the proposed algorithm does not require careful initialization. It also does not need a model selection criterion to choose the suitable number of mixture components. Estimation and model selection can be integrated seamlessly in a single algorithm. Furthermore, the proposed algorithm can preserve the good traits of EM while making significant use of the spatial information in a reasonable amount of time. Experiment results on real images show that the proposed algorithm can provide fast segmentation with high perceptual quality.
出处 《计算机学报》 EI CSCD 北大核心 2006年第6期928-935,共8页 Chinese Journal of Computers
关键词 图像分割 滤波 EM算法 混合模型 模型选择 image segmentation filtering EM algorithm mixture model model selection
  • 相关文献

参考文献10

  • 1Dempster A.P.,Laird N.M.,Rubin D.B..Maximum-likelihood from incomplete data via the EM algorithm.Journal of the Royal Statistical Society,Series B (Methodological),1977,39(1):1~38
  • 2Carson C.,Belongie S.,Greenspan H..Blobworld:Colorand texture-based image segmentation using EM and its application to image querying and classification.IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(8):1026~1038
  • 3Ueda N.,Nakano R.,Ghahramani Z.,Hinton G.E..SMEM algorithm for mixture models.Neural Computation,2000,12(9):2109~2128
  • 4Figueiredo M.A.T.,Jain A.K..Unsupervised learning of finite mixture models.IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(3):381~396
  • 5Akaike H..A new look at the statistical model identification.IEEE Transactions on Automatic Control,1974,19(6):716~723
  • 6Neal R.M.,Hinton G.E..A View of the EM Algorithm That Justifies Incremental,Sparse,and Other Variants.Boston:Kluwer Academic Publishers,1998,355~368
  • 7Celeux G.,Chretien S.,Forbes F..A component-wise EM algorithm for mixtures.INRIA Rhone-Alpes,Frances:Technical Report 3746,1999
  • 8Young I.T.,Gerbrands J.J.,van Vliet L.J..Fundamentals of image processing.Netherlands:Delft University of Technology,1998,49~61
  • 9Lim J.S..Two-Dimensional Signal and Image Processing.Englewood Cliffs,New Jersy:Prentice Hall,1990
  • 10Rissansen J..Stochastic complexity.Journal of the Royal Statistical Society,Series B (Methodological),1987,49(3):223~239

同被引文献69

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部