期刊文献+

Effects of compressibility on the Rayleigh-Taylor instability in Z-pinch implosions

Effects of compressibility on the Rayleigh-Taylor instability in Z-pinch implosions
下载PDF
导出
摘要 The effects of compressibility on the Rayleigh-Taylor instability in Z-pinch implosion plasmas are investigated by means of simple slab geometry.The linear mode equation,which includes main steady-state quantities and their gradients,is derived.Numerical solutions are presented.The incompressible fluid result is also obtained.These results indicate that the linear growth rate of the Rayleigh-Taylor instability for the compressible magnetohydrodynamic fluid is far larger than one in the incompressible situation.Therefore,the compressible systems are all more unstable than the incompressible ones. The effects of compressibility on the Rayleigh-Taylor instability in Z-pinch implosion plasmas are investigated by means of simple slab geometry. The linear mode equation, which includes main steady-state quantities and their gradients, is derived. Numerical solutions are presented, The incompressible fluid result is also obtained. These results indicate that the linear growth rate of the Rayleigh-Taylor instability for the compressible rnagnetohydrodynamic fluid is far larger than one in the incompressible situation. Therefore, the compressible systems are all more unstable than the incompressible ones.
出处 《核聚变与等离子体物理》 EI CAS CSCD 北大核心 2006年第2期87-94,共8页 Nuclear Fusion and Plasma Physics
关键词 Z-PINCH Rayleigh-Taylor instability COMPRESSIBILITY Growth rate. Z-pinch Rayleigh-Taylorinstability Compressibility Growth rate.
  • 相关文献

参考文献18

  • 1Pereira N R, Davis J. X rays from Z-pinches on relativistic electron-beam generators [J]. J. Appl.Phys., 1988, 64(3):R1.
  • 2Hussey T W, Roderick N F, Shumlak U, et al. A heuristic model for the nonlinear Rayleigh-Taylor instability in fast Z pinches [J]. Phys. Plasmas, 1995,2(6): 2055.
  • 3Deeney C , Coverdale C A, Douglas M R, et al.Radiative properties of high wire number tungsten arrays with implosion times up to 250 ns [J]. Phys.Plasmas, 1999, 6(9): 3576.
  • 4Matzen M K. Z pinches as intense x-ray sources for high-energy density physics applications [J]. Phys.Plasmas, 1997, 4(5): 1519.
  • 5Groot J S De, Toor A, Golberg S M, et al. Growth of the Rayleigh-Taylor instability in an imploding Z-pinch [J]. Phys. Plasmas, 1997, 4(3): 737.
  • 6Haines M G. A heuristic model of the wire array Z-pinch [J]. IEEE Trans. Plasma Sci., 1998,26(4): 1275,
  • 7Sanford T W L, Allshouse G O, Marder B M, et. al.Improved symmetry greatly increases X-ray power from wire-array Z-pinches [J]. Phys. Rev, Lett., 1996,77(25): 5063.
  • 8Arber T D, Coppins M, Scheffel J. Large Larmor radius stability of the Z pinch [J]. Phys. Rev. Lett,,1994, 72(15): 2399.
  • 9Huba J D. Finite Latmor radius magnetohydrodynamics of the Rayleigh-Taylor instability [J].Phys. Plasmas, 1996, 3(7): 2523.
  • 10Shumlak U. Roderick N F. Mitigation of the Rayleigh-Taylor instability by sheared axial flows [J].Phys. Plasmas, 1998, 5(6): 2384.

二级参考文献24

  • 1Cochran F L, Davis J, Velikovich A L. Phys. Plasmas,1995, 2:2765.
  • 2Matzen M Keith. Phys. Plasmas. 1997, 4:1519.
  • 3Sanford T W L, Allshouse G O, Marder B M, et al.Phys. Rev. Lett., 1996, 77:5063.
  • 4Wright R J, Pott D F R, Haines M G. Plasma Phys,1976, 18:1.
  • 5Arber T D, Howell D F. Phys. Plasmas, 1996, 3:554.
  • 6Shumlak U, Hartman C W. Phys. Rev. Lett., 1995,75:3285.
  • 7Shumlak U, Roderick N F. Phys. Plasmas, 1998, 5:2384.
  • 8Ruden E L. IEEE Trans. On Plasma Science, 2002,30:611.
  • 9Arber T D, Coppins M, Scheffel J. Phys. Rev. Lett.,1994, 72:2399.
  • 10Arber T D, Russell P G F, Coppins M, et al. Phys.Rev. Lett., 1995, 74:2698.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部