期刊文献+

表情特征区域归一化误差分析及矫正

Normalization Error Analysis and Correction of Facial Feature Regions
下载PDF
导出
摘要 几何归一化处理对于表情特征信息的有效提取具有重要意义,常用的归一化方法由于选择的基准特征在表情变化时存在不稳定性,容易造成归一化后的结果存在误差。本文结合光流特征提取方法分析了归一化误差对表情特征提取的严重影响,并提出了加权优化匹配算法进行误差的矫正。算法以传统模板匹配原理为基础,根据各像素点的运动剧烈程度分配相应的匹配权值。实验证明,误差得到了有效的矫正,提取的表情特征信息更加真实。 Generally the geometrical normalization process is important to the extraction of facial expression features. In commonly used normalization methods, the unstability of the fiducial features resulted from facial motions always causes normalization errors. Making use of the optical flow method, the paper analyzes quantitatively the serious influence on feature extraction caused by normalization errors,and proposes a weighted optimal matching algorithm to solve it. The algorithm is founded on the basis of the template matching theory, and assigns corresponding weights to the points by their motive degrees when carrying on the calculation of correlative coefficients. Experimental results show that the algorithm can restrain the disturbance that normalization error produces,and facial expression features can be extracted more accurately.
出处 《计算机工程与科学》 CSCD 2006年第6期62-65,共4页 Computer Engineering & Science
基金 国家973计划资助项目(2004CB719404)
关键词 表情特征提取 归一化 误差矫正 光流 human facial feature extraction normalization error-correction optical flow
  • 相关文献

参考文献5

  • 1T K Kim,S C Kee,S R Kim.Real-Time Normalization and Feature Extraction of 3D Face Data Using Curvature Characteristics[A].10th IEEE Int'l Workshop on Robot and Human Interactive Communication[C].2001.74-79.
  • 2朱长仁,王润生.基于单视图的多姿态人脸识别算法[J].计算机学报,2003,26(1):104-109. 被引量:23
  • 3Beat Fasel,Juergen Luettin.Automatic Facial Expression Analysis:A Survey[J].Pattern Recognition,2003,36(1):259-275.
  • 4B Horn,B Schunck.Determining Optical Flow[J].Artificial Intelligence,1981,17(1-3):185-203.
  • 5Viola Paul,Jones Michael.Rapid Object Detection Using a Boosted Cascade of Simple Features[A].Proc IEEE Conf on Computer Vision and Pattern Recognition[C].2001.

二级参考文献8

  • 1[1]Chellappa R, Wilson C L, Sirohey S. Human and machine recognition of faces: Asurvey. In: Proceedings of the IEEE, 1995,83(5):705~740
  • 2[2]Samal A, Iyengar P A. Automatic recognition and analysis of human faces and facial expressions: A survey. Pattern Recognition, 1992,25(1):65~77
  • 3[3]Valentin D, Abdi H, O'Toole A J. Cottrel G W. Connectionist model of face processing: A survey. Pattern Recognition, 1994,27(9):1209~1230
  • 4[4]Brunelli R, Poggio T. Face recognition: Feature versus templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993,15(10):1042~1052
  • 5[5]Turk M, Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3(1):71~86
  • 6[6]Pentland A, Moghaddam B, Starner T. View based and modular eigenspaces for face recognition. In: Proceedings of IEEE ConferenceCVPR'94, Seattle, 1994. 84~91
  • 7[7]Lam K M, Yan H. An improved method for locating and extracting the eye in human face images. In: Proceedings of ICPR'96,Vienna, Austria, 1996, C:411~415
  • 8[8]Xie X, Sudhaker R, Zhuang H. On improving eye feature extraction using deformable templates. Pattern Recognition, 1994,27(6):791~799

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部