期刊文献+

粒子群优化算法的收敛性分析及其混沌改进算法 被引量:62

Convergence Analysis of Particle Swarm Optimization and Its Improved Algorithm Based on Chaos
下载PDF
导出
摘要 分析了粒子群优化算法的收敛性,指出它在满足收敛性的前提下种群多样性趋于减小,粒子将会因速度降低而失去继续搜索可行解的能力;提出混沌粒子群优化算法,该算法在满足收敛性的条件下利用混沌特性提高种群的多样性和粒子搜索的遍历性,将混沌状态引入到优化变量使粒子获得持续搜索的能力.实验结果表明混沌粒子群优化算法是有效的,与粒子群优化算法、遗传算法、模拟退火相比,特别是针对高维、多模态函数优化问题取得了明显改善. The particle swarm optimization (PSO) algorithm is analyzed. Its premature convergence is due to the decrease of velocity of particles in search space that leads to a total implosion and ultimately fitness stagnation of the swarm. A chaotic particle swarm optimization (CPSO) algorithm is introduced to overcome the problem of premature convergence. CPSO uses the properties of ergodicity, stochastic property, and regularity of chaos to lead particles' exploration. This enable the swarm system to have the ability of "sustainable development". Simulation results show that CPSO prevents premature convergence effectively and is better than PSO, genetic algorithm and simulated annealing on some benchmark function optimization problems.
出处 《控制与决策》 EI CSCD 北大核心 2006年第6期636-640,645,共6页 Control and Decision
基金 国家自然科学基金项目(60373095) 国家973计划项目(2100CCA00700) 教育部科学基金项目(KP0302)
关键词 粒子群优化算法 混沌 多模态函数优化问题 遗传算法 模拟退火算法 Particle swarm optimization Chaos Multi-modal function optimization problem Genetic algorithms Simulated annealing
  • 相关文献

参考文献15

  • 1Kennedy J,Eberhart R.Swarm Intelligence[M].San Francisco:Morgan Kaufmann Publishers,2001.
  • 2Boeringer D W,Werner D H.Particle Swarm Optimization Versus Genetic Algorithms for Phased Array Synthesis[J].IEEE Trans on Antennas and Propagation,2004,52(3):771-779.
  • 3Parsopulos K E,Vrahatis M N.Recent Approaches to Global Optimization Problems Through Particle Swarm Optimization[J].Natural Computing,2002,1(2-3):235-306.
  • 4彭宇,彭喜元,刘兆庆.微粒群算法参数效能的统计分析[J].电子学报,2004,32(2):209-213. 被引量:44
  • 5Liu H B,Li B,Wang X K,et al.Survival Density Particle Swarm Optimisation for Neural Network Training[A].Lecture Notes in Computer Science[C].Springer-Verlag,2004,3173:332-337.
  • 6Sousa T,Silva A,Neves A.Particle Swarm Based Data Mining Algorithms for Classification Tasks[J].Parallel Computing,2004,30(5-6):767-783.
  • 7谭国真,柳亚玲,高文.随机时间依赖网络的K期望最短路径[J].计算机学报,2003,26(3):323-331. 被引量:12
  • 8李宁,刘飞,孙德宝.基于带变异算子粒子群优化算法的约束布局优化研究[J].计算机学报,2004,27(7):897-903. 被引量:74
  • 9Clerc M,Kennedy J.The Particle Swarm-Explosion,Stability,and Convergence in a Multidimensional Complex Space[J].IEEE Trans on Evolutionary Computation,2002,6(1):58-73.
  • 10Frans van den Bergh.An Analysis of Particle Swarm Optimizers[D].Pretoria:University of Pretoria,2001:78-85.

二级参考文献29

  • 1现代数学应用手册编委会.概率统计与随机过程卷(第一版)[M].北京:清华大学出版社,2000.276-302.
  • 2Chen L, Aihara K. Global search ability of chaotic neural networks [J]. IEEE Trans on Circuits Systems, 1999, 46 (8) : 974-993.
  • 3Feng J, Ying W Y. Pattern search algorithm an its application research in three-dimensional component layout [J]. J of Wuhan University of Technology,2003,27(2) :280-284.
  • 4Teng Hong-Fei, Sun Shou-Lin, Ge Wen-Hai, Zhong Wan-Xie. Layout optimization for the dishes installed on a rotating table. Science in China (Series A), 1994,37(10): 1272~1280
  • 5Kennedy J.. Small worlds and mega-minds: Effects of neighborhood topology on particle swarm performance. In: Proceedings of the Congress on Evolutionary Computation, Washington DC, USA, 1999, 1931~1938
  • 6Clerc M., Kennedy J.. The particle swarm--Explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computer, 2002,6(1): 58~73
  • 7van den Bergh F.. An analysis of particle swarm optimizers[Ph.D. dissertation]. Department of Computer Science, University of Pretoria, South Africa, 2002
  • 8Kennedy J., Eberhart R.C.. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Perth Australia, 1995, 1942~1948
  • 9Eberhart R.C., Shi Y.. Particle swarm optimization: Developments, applications and resources. In: Proceedings of the Congress on Evolutionary Computation 2001, 2001, 81~86
  • 10Polychronopoulos G H. Stochastic shortest path problems with recourse. Networks, 1996,27(2): 133~143

共引文献324

同被引文献565

引证文献62

二级引证文献653

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部