期刊文献+

基于PGA-ANFIS的露天矿山开采调度系统的实时优化与实践 被引量:1

REAL TIME OPTIMIZATION RESEARCH AND APPLICATION OF MINING SCHEDULING SYSTEM BASED ON GENETIC ALGORITHMS AND ADAPTIVE NETWORK FUZZY INFERENCE SYSTEM
下载PDF
导出
摘要 矿山开采调度系统主要解决不同平台开采的穿孔爆破技术经济参数优化问题。本文以雪峰水泥原料矿山为例,运用自适应模糊推理系统方法构造露天矿山开采调度系统模型,用并行遗传算法解决了不确定环境条件下的复杂矿山开采调度系统模型的优化问题,取得了较好的经济效益。这不仅为生产调度系统的在线优化问题提供了新的思路,而且为穿孔爆破参数的优化提供了新的方法,对促进矿山生产系统的自动化、信息化、智能化、集约化具有重要的参考价值。 Mining Scheduling System model is mainly used for the optimization of drilling-blasting technical and economic parameters of different platforms. By taking Xuefeng cement material quarry as an example, this paper constructed strip Mining Scheduling System model with Adaptive Network-based Fuzzy Inference System, and solved optimization problem of complicated quarry Mining Scheduling System under uncertainty by Parallel Genetic Algorithms. The application of this system brought good economic benefit. The research not only prorides new idea for on-line optimization problem of Mining Scheduling System, but also provides theory for optimizing drilling-blasting parameter, and furthermore, provides important reference to the automatization,informazation, intelligentization and intergration of quarry production system.
出处 《工程爆破》 2006年第2期12-15,18,共5页 Engineering Blasting
关键词 自适应模糊推理系统(ANFIS) 并行遗传算法(PGA) 开采调度系统(MSS) Adaptive Network-based Fuzzy Inference System(ANFIS) Parallel Genetic Algorithms(PGA) Mining Scheduling System(MSS)
  • 相关文献

参考文献9

  • 1Haas R,Hunt K J.Genetic Based Optimisation of a FuzzyNeural Vehicle Controller[R].Technical Report,Daimler Benz AG,Research and Technology,Berlin,1994.
  • 2飞思科技产品研发中心.MATLAB6.5辅助优化计算与设计[M].北京:电子工业出版社,2003.1(MATLAB应用技术).
  • 3Chipperfield A,Fleming P,Pohlheim H,Fonseca C.Genetic Algorithm TOOLBOX for Use with MATLAB Version1.2User's Guide[M].
  • 4Michalewicz Z.Genetic Algorithms + Data Structures = Evolution Programs,Second,Extended Edition[M].Berlin,Heidelberg,New York:Springer-Verlag,1994.
  • 5Pohlheim H,Pawletta S,Westphal A.Parallel Evolutionary Optimization under Matlab on Standard Computing Networks[C].In:[CEC99],Evolutionary Computation and Parallel Processing Workshop,1999,174-176.http://www.pohlheim.com/papers pohlheim.html.
  • 6Li Y,Ng K C.Uniform Approach to Model-based Fuzzy Control System Design and Structural Optimization[C].In:Genetic Algorithms and Soft Computing,Herrera F and Verdegay J(ed),Physica Verlag,1996,129-151.
  • 7欧进萍,张利芬.模糊神经网络控制系统优化的实整数混合编码遗传算法[J].地震工程与工程振动,2003,23(1):11-17. 被引量:2
  • 8Fonseca C M,Fleming P J.Multiobjective Optimization and Multiple Constraint Handling with Evolutionary Algorithms I:A Unified Formulation[M].Research Report 564,Dept.Automatic Control and Systems Eng.,University of Sheffield; Sheffield,U.K.,1995.
  • 9Fonseca C M.Multiobjective Genetic Algorithms with Application to Control Engineering Problems[D].Thesis,Department of Automatic Control and Systems Engineering,University of Sheffield,Sheffield,U K,1995.

二级参考文献8

共引文献1

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部